Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK.
Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK.
J Struct Biol. 2020 Jan 1;209(1):107405. doi: 10.1016/j.jsb.2019.107405. Epub 2019 Oct 16.
Tetratricopeptide repeat (TPR) proteins belong to the class of α-solenoid proteins, in which repetitive units of α-helical hairpin motifs stack to form superhelical, often highly flexible structures. TPR domains occur in a wide variety of proteins, and perform key functional roles including protein folding, protein trafficking, cell cycle control and post-translational modification. Here, we look at the TPR domain of the enzyme O-linked GlcNAc-transferase (OGT), which catalyses O-GlcNAcylation of a broad range of substrate proteins. A number of single-point mutations in the TPR domain of human OGT have been associated with the disease Intellectual Disability (ID). By extended steered and equilibrium atomistic simulations, we show that the OGT-TPR domain acts as an elastic nanospring, and that each of the ID-related local mutations substantially affect the global dynamics of the TPR domain. Since the nanospring character of the OGT-TPR domain is key to its function in binding and releasing OGT substrates, these changes of its biomechanics likely lead to defective substrate interaction. We find that neutral mutations in the human population, selected by analysis of the gnomAD database, do not incur these changes. Our findings may not only help to explain the ID phenotype of the mutants, but also aid the design of TPR proteins with tailored biomechanical properties.
四肽重复(TPR)蛋白属于α-螺旋蛋白类,其中α-螺旋发夹模体的重复单元堆叠形成超螺旋结构,通常具有高度的灵活性。TPR 结构域存在于各种蛋白质中,发挥着关键的功能作用,包括蛋白质折叠、蛋白质运输、细胞周期调控和翻译后修饰。在这里,我们研究了酶 O-连接的 N-乙酰葡萄糖胺转移酶(OGT)的 TPR 结构域,该结构域催化广泛的底物蛋白的 O-GlcNAc 化。人类 OGT 的 TPR 结构域中的一些单点突变与智力障碍(ID)疾病有关。通过扩展的导向和平衡原子模拟,我们表明 OGT-TPR 结构域充当弹性纳米弹簧,并且 ID 相关的局部突变会显著影响 TPR 结构域的整体动力学。由于 OGT-TPR 结构域的纳米弹簧特性是其结合和释放 OGT 底物的功能关键,因此其生物力学的这些变化可能导致底物相互作用的缺陷。我们发现,人群中由 gnomAD 数据库分析选择的中性突变不会导致这些变化。我们的发现不仅有助于解释突变体的 ID 表型,而且有助于设计具有定制生物力学特性的 TPR 蛋白。