Xie Feng-Yun, Feng Yu-Long, Wang Hong-Hui, Ma Yun-Feng, Yang Yang, Wang Yin-Chao, Shen Wei, Pan Qing-Jie, Yin Shen, Sun Yu-Jiang, Ma Jun-Yu
Institute of Reproductive Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Black Donkey Research Institute, Shandong Dongeejiao Company Limited, Liaocheng, Shandong, 252000, China.
PLoS One. 2015 Jul 24;10(7):e0133258. doi: 10.1371/journal.pone.0133258. eCollection 2015.
Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.
在农业和劳动密集型任务实现机械化之前,人类使用驴(非洲野驴索马里亚种)进行农活和驮运。然而,随着机械化程度的提高,在中国,驴越来越多地被饲养用于获取肉、奶和皮毛。为了维持驴产业的发展,育种计划应侧重于与这些新用途相关的性状。与传统的标记辅助育种计划相比,基于基因组和转录组的选择方法更高效、更有效。为了分析驴基因组的编码基因,我们从头组装了驴白细胞的转录组。利用转录组深度测序数据,我们鉴定出264,714个不同的驴单基因,并预测了38,949个蛋白质片段。我们通过对非冗余(NR)蛋白质数据库进行BLAST搜索来注释驴单基因。我们还将驴的蛋白质序列与马(家马)和野马(普氏野马)的蛋白质序列进行了比较,并将驴的蛋白质片段与哺乳动物的表型联系起来。由于驴和马的外耳大小明显不同,我们比较了驴和马中与外耳大小相关的蛋白质。我们鉴定出三种与耳朵大小相关的蛋白质,即HIC1、PRKRA和KMT2A,它们在驴、马和野马的基因座之间存在序列差异。由于驴的基因组序列尚未公布,从头组装的驴转录组有助于对驴品种进行初步研究和遗传改良。