Suppr超能文献

用于预测化学性哮喘危害的精细化定量构效关系模型

A refined QSAR model for prediction of chemical asthma hazard.

机构信息

Department of Information Services, The University of Edinburgh, Edinburgh EH8 9LJ, UK.

Centre for Occupational and Environmental Health, Centre for Epidemiology, Institute of Population Health, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M13 9PL, UK.

出版信息

Occup Med (Lond). 2015 Nov;65(8):659-66. doi: 10.1093/occmed/kqv105. Epub 2015 Jul 23.

Abstract

BACKGROUND

A previously developed quantitative structure-activity relationship (QSAR) model has been extern ally validated as a good predictor of chemical asthma hazard (sensitivity: 79-86%, specificity: 93-99%).

AIMS

To develop and validate a second version of this model.

METHODS

Learning dataset asthmagenic chemicals with molecular weight (MW) <1 kDa were identified from reports published in the peer-reviewed literature before the end of 2012. Control chemicals for which no reported case(s) of occupational asthma had been identified were selected at random from UK and US occupational exposure limit tables. MW banding was used in an attempt to categorically match the control group for MW distribution of the asthmagens. About 10% of chemicals in each MW category were excluded for use as an external validation set. An independent researcher utilized a logistic regression approach to compare the molecular descriptors present in asthmagens and controls. The resulting equation generated a hazard index (HI), with a value between zero and one, as an estimate of the probability that the chemical had asthmagenic potential. The HI was determined for each compound in the external validation set.

RESULTS

The model development sets comprised 99 chemical asthmagens and 204 controls. The external validation showed that using a cut-point HI of 0.39, 9/10 asthmagenic (sensitivity: 90%) and 23/24 non-asthmagenic (specificity: 96%) compounds were correctly predicted. The new QSAR model showed a better receiver operating characteristic plot than the original.

CONCLUSIONS

QSAR refinement by iteration has resulted in an improved model for the prediction of chemical asthma hazard.

摘要

背景

先前开发的定量构效关系(QSAR)模型已被外部验证为化学哮喘危害的良好预测因子(敏感性:79-86%,特异性:93-99%)。

目的

开发和验证该模型的第二个版本。

方法

从 2012 年底之前发表的同行评审文献中识别出学习数据集中小分子量(MW)<1 kDa 的致哮喘化学品。从英国和美国职业接触限值表中随机选择未报告职业性哮喘病例的对照化学品。MW 带用于尝试对对照组进行分类,以匹配致哮喘剂的 MW 分布。每个 MW 类别中约有 10%的化学品被排除在外,用作外部验证集。一位独立研究人员利用逻辑回归方法比较了致哮喘剂和对照组中存在的分子描述符。由此产生的方程生成了一个危害指数(HI),其值在零到一之间,作为该化学物质具有致哮喘潜力的概率估计。在外部验证集中为每个化合物确定 HI。

结果

模型开发集由 99 种化学致哮喘剂和 204 种对照物组成。外部验证表明,使用 HI 截断值为 0.39,可正确预测 9/10 种致哮喘剂(敏感性:90%)和 23/24 种非致哮喘剂(特异性:96%)化合物。新的 QSAR 模型显示出比原始模型更好的接收器操作特性图。

结论

通过迭代进行 QSAR 细化,导致了用于预测化学哮喘危害的改进模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验