Suppr超能文献

使用机器学习方法和结构警示进行药物设计的化学毒性预测

Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts.

作者信息

Yang Hongbin, Sun Lixia, Li Weihua, Liu Guixia, Tang Yun

机构信息

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.

出版信息

Front Chem. 2018 Feb 20;6:30. doi: 10.3389/fchem.2018.00030. eCollection 2018.

Abstract

During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

摘要

在药物研发过程中,安全性始终是最重要的问题,包括各种毒性和药物不良反应,这些都应在临床前和临床试验阶段进行评估。这篇综述文章首先简要介绍了用于药物设计中化学毒性预测的计算方法,包括机器学习方法和结构警示。机器学习方法已广泛应用于定性分类和定量回归研究,而结构警示可被视为先导优化的补充工具。本文重点介绍了针对各种毒性建立的预测模型的最新进展。还提供了可用的数据库和网络服务器。尽管这些方法和模型对药物设计非常有帮助,但未来药物安全性评估仍存在一些挑战和局限性有待改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/935a/5826228/3667b8d54506/fchem-06-00030-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验