State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
Water Res. 2015 Nov 1;84:49-57. doi: 10.1016/j.watres.2015.07.016. Epub 2015 Jul 15.
Graphene has attracted considerable commercial interest due to its numerous potential applications. It is inevitable that graphene will be released into the environment during the production and usage of graphene-enabled consumer products, but the potential transformations of graphene in the environment are not well understood. In this study, (14)C-labeled few layer graphene (FLG) enabled quantitative measurements of FLG degradation rates induced by the iron/hydrogen peroxide induced Fenton reaction. Quantification of (14)CO2 production from (14)C-labeled FLG revealed significant degradation of FLG after 3 days with high H2O2 (200 mmol L(-1)) and iron (100 μmol L(-1)) concentrations but substantially lower rates under environmentally relevant conditions (0.2-20 mmol L(-1) H2O2 and 4 μmol L(-1) Fe(3+)). Importantly, the carbon-14 labeling technique allowed for quantification of the FLG degradation rate at concentrations nearly four orders of magnitude lower than those typically used in other studies. These measurements revealed substantially faster degradation rates at lower FLG concentrations and thus studies with higher FLG concentrations may underestimate the degradation rates. Analysis of structural changes to FLG using multiple orthogonal methods revealed significant FLG oxidation and multiple reaction byproducts. Lastly, assessment of accumulation of the degraded FLG and intermediates using aquatic organism Daphnia magna revealed substantially decreased body burdens, which implied that the changes to FLG caused by the Fenton reaction may dramatically impact its potential ecological effects.
由于其众多潜在应用,石墨烯引起了相当大的商业兴趣。在生产和使用启用石墨烯的消费产品过程中,石墨烯不可避免地会释放到环境中,但环境中石墨烯的潜在转化尚不清楚。在这项研究中,(14)C 标记的少层石墨烯(FLG)使定量测量由铁/过氧化氢诱导的芬顿反应引起的 FLG 降解率成为可能。从(14)C 标记的 FLG 产生的(14)CO2 的量化表明,在高 H2O2(200 mmol L-1)和铁(100 μmol L-1)浓度下,FLG 在 3 天后发生了显着降解,但在环境相关条件下(0.2-20 mmol L-1 H2O2 和 4 μmol L-1 Fe(3+))下的降解速率要低得多。重要的是,碳-14 标记技术允许在比其他研究中通常使用的浓度低四个数量级的情况下定量测定 FLG 的降解速率。这些测量结果表明,在较低的 FLG 浓度下,降解速率更快,因此,具有较高 FLG 浓度的研究可能会低估降解速率。使用多种正交方法对 FLG 的结构变化进行分析表明,FLG 发生了明显的氧化和多种反应副产物。最后,使用水生物溞评估降解的 FLG 和中间产物的积累情况表明,生物体内的负担明显降低,这意味着芬顿反应引起的 FLG 变化可能会极大地影响其潜在的生态影响。