Suppr超能文献

基层医疗中半月板撕裂的临床预测规则:一项多中心研究的制定与内部验证

A clinical prediction rule for meniscal tears in primary care: development and internal validation using a multicentre study.

作者信息

Snoeker Barbara Am, Zwinderman Aeilko H, Lucas Cees, Lindeboom Robert

机构信息

Academic Medical Centre, University of Amsterdam, Division of Public Health, Amsterdam, the Netherlands.

出版信息

Br J Gen Pract. 2015 Aug;65(637):e523-9. doi: 10.3399/bjgp15X686089.

Abstract

BACKGROUND

In primary care, meniscal tears are difficult to detect. A quick and easy clinical prediction rule based on patient history and a single meniscal test may help physicians to identify high-risk patients for referral for magnetic resonance imaging (MRI).

AIM

The study objective was to develop and internally validate a clinical prediction rule (CPR) for the detection of meniscal tears in primary care.

DESIGN AND SETTING

In a cross-sectional multicentre study, 121 participants from primary care were included if they were aged 18-65 years with knee complaints that existed for <6 months, and who were suspected to suffer from a meniscal tear.

METHOD

One diagnostic physical meniscal test and 14 clinical variables were considered to be predictors of MRI outcome. Using known predictors for the presence of meniscal tears, a 'quick and easy' CPR was derived.

RESULTS

The final CPR included the variables sex, age, weight-bearing during trauma, performing sports, effusion, warmth, discolouration, and Deep Squat test. The final model had an AUC of 0.76 (95% CI = 0.72 to 0.80). A cut-point of 150 points yielded an overall sensitivity of 86.1% and a specificity of 45.5%. For this cut-point, the positive predictive value was 55.0%, and the negative predictive value was 81.1%. A scoring system was provided including the corresponding predicted probabilities for a meniscal tear.

CONCLUSION

The CPR improved the detection of meniscal tears in primary care. Further evaluation of the CPR in new primary care patients is needed, however, to assess its usefulness.

摘要

背景

在初级医疗保健中,半月板撕裂很难被检测出来。基于患者病史和单项半月板检查的快速简便的临床预测规则,可能有助于医生识别出需要转诊进行磁共振成像(MRI)检查的高危患者。

目的

本研究的目的是开发并在内部验证一种用于在初级医疗保健中检测半月板撕裂的临床预测规则(CPR)。

设计与背景

在一项横断面多中心研究中,纳入了121名来自初级医疗保健机构的参与者,他们年龄在18至65岁之间,有膝关节不适症状且持续时间小于6个月,并且怀疑患有半月板撕裂。

方法

将一项诊断性半月板体格检查和14个临床变量视为MRI结果的预测因素。利用已知的半月板撕裂存在的预测因素,得出了一个“快速简便”的CPR。

结果

最终的CPR包括性别、年龄、受伤时是否负重、是否进行体育运动、积液、发热、变色以及深蹲试验等变量。最终模型的曲线下面积(AUC)为0.76(95%置信区间=0.72至0.80)。切点为150分时,总体敏感性为86.1%,特异性为45.5%。对于该切点,阳性预测值为55.0%,阴性预测值为81.1%。提供了一个评分系统,包括半月板撕裂的相应预测概率。

结论

CPR提高了初级医疗保健中半月板撕裂的检测率。然而,需要在新的初级医疗保健患者中对CPR进行进一步评估,以评估其有用性。

相似文献

5

本文引用的文献

2
Risk factors for meniscal tears: a systematic review including meta-analysis.半月板撕裂的危险因素:系统评价包括荟萃分析。
J Orthop Sports Phys Ther. 2013 Jun;43(6):352-67. doi: 10.2519/jospt.2013.4295. Epub 2013 Apr 29.
5
Understanding the different physical examination tests for suspected meniscal tears.
Curr Sports Med Rep. 2010 Sep-Oct;9(5):284-9. doi: 10.1249/JSR.0b013e3181f2727e.
7
Do physical diagnostic tests accurately detect meniscal tears?体格诊断测试能否准确检测出半月板撕裂?
Knee Surg Sports Traumatol Arthrosc. 2009 Jul;17(7):806-11. doi: 10.1007/s00167-009-0803-3. Epub 2009 Apr 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验