Suppr超能文献

尖波涟漪期间不同深层和浅层CA1锥体细胞动力学的决定因素

Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples.

作者信息

Valero Manuel, Cid Elena, Averkin Robert G, Aguilar Juan, Sanchez-Aguilera Alberto, Viney Tim J, Gomez-Dominguez Daniel, Bellistri Elisa, de la Prida Liset Menendez

机构信息

Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

Hungarian Academy of Sciences, University of Szeged Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary.

出版信息

Nat Neurosci. 2015 Sep;18(9):1281-1290. doi: 10.1038/nn.4074. Epub 2015 Jul 27.

Abstract

Sharp-wave ripples represent a prominent synchronous activity pattern in the mammalian hippocampus during sleep and immobility. GABAergic interneuronal types are silenced or fire during these events, but the mechanism of pyramidal cell (PC) participation remains elusive. We found opposite membrane polarization of deep (closer to stratum oriens) and superficial (closer to stratum radiatum) rat CA1 PCs during sharp-wave ripples. Using sharp and multi-site recordings in combination with neurochemical profiling, we observed a predominant inhibitory drive of deep calbindin (CB)-immunonegative PCs that contrasts with a prominent depolarization of superficial CB-immunopositive PCs. Biased contribution of perisomatic GABAergic inputs, together with suppression of CA2 PCs, may explain the selection of CA1 PCs during sharp-wave ripples. A deep-superficial gradient interacted with behavioral and spatial effects to determine cell participation during sleep and awake sharp-wave ripples in freely moving rats. Thus, the firing dynamics of hippocampal PCs are exquisitely controlled at subcellular and microcircuit levels in a cell type-selective manner.

摘要

尖波涟漪是哺乳动物海马体在睡眠和静止状态下一种显著的同步活动模式。在这些事件中,γ-氨基丁酸能中间神经元类型会沉默或放电,但锥体细胞(PC)参与的机制仍不清楚。我们发现在尖波涟漪期间,大鼠CA1区深层(更靠近海马下托层)和浅层(更靠近辐射层)PC的膜极化情况相反。通过结合神经化学分析的尖锐和多部位记录,我们观察到深层钙结合蛋白(CB)免疫阴性PC主要受到抑制性驱动,这与浅层CB免疫阳性PC的显著去极化形成对比。胞体周围γ-氨基丁酸能输入的偏向性贡献,以及对CA2区PC的抑制,可能解释了尖波涟漪期间CA1区PC的选择。深浅梯度与行为和空间效应相互作用,以确定自由活动大鼠在睡眠和清醒尖波涟漪期间的细胞参与情况。因此,海马体PC的放电动态在亚细胞和微电路水平上以细胞类型选择性的方式受到精确控制。

相似文献

1
Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples.
Nat Neurosci. 2015 Sep;18(9):1281-1290. doi: 10.1038/nn.4074. Epub 2015 Jul 27.
2
Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques.
Cell Rep. 2024 Aug 27;43(8):114519. doi: 10.1016/j.celrep.2024.114519. Epub 2024 Jul 16.
7
Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses.
Hippocampus. 2012 May;22(5):995-1017. doi: 10.1002/hipo.20930. Epub 2011 Mar 30.
9
Development of Differential Sublaminar Feedforward Inhibitory Circuits in CA1 Hippocampus Requires .
J Neurosci. 2025 Feb 19;45(8):e0737242024. doi: 10.1523/JNEUROSCI.0737-24.2024.
10
The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.
Hippocampus. 2015 Feb;25(2):169-86. doi: 10.1002/hipo.22361. Epub 2014 Sep 25.

引用本文的文献

1
Spatio-temporal organization of network activity patterns in the hippocampus.
Cell Rep. 2025 Jun 4;44(6):115808. doi: 10.1016/j.celrep.2025.115808.
3
Integrating endocannabinoid signaling, CCK interneurons, and hippocampal circuit dynamics in behaving animals.
Neuron. 2025 Jun 18;113(12):1862-1885. doi: 10.1016/j.neuron.2025.03.016. Epub 2025 Apr 22.
4
A cortical-hippocampal communication undergoes rebalancing after new learning.
bioRxiv. 2025 Mar 29:2025.03.26.645547. doi: 10.1101/2025.03.26.645547.
5
Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development.
Neuron. 2025 Jun 4;113(11):1805-1822.e7. doi: 10.1016/j.neuron.2025.03.005. Epub 2025 Mar 26.
7
Development of Differential Sublaminar Feedforward Inhibitory Circuits in CA1 Hippocampus Requires .
J Neurosci. 2025 Feb 19;45(8):e0737242024. doi: 10.1523/JNEUROSCI.0737-24.2024.
9
Organizing the coactivity structure of the hippocampus from robust to flexible memory.
Science. 2024 Sep 6;385(6713):1120-1127. doi: 10.1126/science.adk9611. Epub 2024 Sep 5.
10
A hippocampal circuit mechanism to balance memory reactivation during sleep.
Science. 2024 Aug 16;385(6710):738-743. doi: 10.1126/science.ado5708. Epub 2024 Aug 15.

本文引用的文献

1
Hippocampal sharp-wave ripples in waking and sleeping states.
Curr Opin Neurobiol. 2015 Dec;35:6-12. doi: 10.1016/j.conb.2015.05.001. Epub 2015 May 23.
4
Different mechanisms of ripple-like oscillations in the human epileptic subiculum.
Ann Neurol. 2015 Feb;77(2):281-90. doi: 10.1002/ana.24324. Epub 2014 Dec 19.
5
Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.
Neuron. 2014 Jul 16;83(2):467-480. doi: 10.1016/j.neuron.2014.06.023.
6
idTracker: tracking individuals in a group by automatic identification of unmarked animals.
Nat Methods. 2014 Jul;11(7):743-8. doi: 10.1038/nmeth.2994. Epub 2014 Jun 1.
7
Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells.
Neuron. 2014 Jun 4;82(5):1129-44. doi: 10.1016/j.neuron.2014.03.034. Epub 2014 May 15.
8
Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus.
Neuron. 2014 May 21;82(4):872-86. doi: 10.1016/j.neuron.2014.04.007. Epub 2014 May 1.
9
Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations.
J Neurosci. 2014 Feb 19;34(8):2989-3004. doi: 10.1523/JNEUROSCI.2826-13.2014.
10
Quantitative ultrastructural analysis of basket and axo-axonic cell terminals in the mouse hippocampus.
Brain Struct Funct. 2015 Mar;220(2):919-40. doi: 10.1007/s00429-013-0692-6. Epub 2014 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验