Yang Juan, Mirhosseiniardakani Soheila, Qiu Liyan, Bicja Kostandina, Del Greco Abigail, Lin Kevin JungKai, Lyon Mark, Chen Xuanmao
Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA.
Graduate Program in Biochemistry, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA.
Development. 2025 Mar 1;152(5). doi: 10.1242/dev.204300. Epub 2025 Mar 11.
Currently, not much is known about neuronal positioning and the roles of primary cilia in postnatal neurodevelopment. We show that primary cilia of principal neurons undergo marked changes in positioning and orientation, concurrent with postnatal neuron positioning in the mouse cerebral cortex. Primary cilia of early- and late-born principal neurons in compact layers display opposite orientations, while neuronal primary cilia in loose laminae are predominantly oriented toward the pia. In contrast, astrocytes and interneurons, and neurons in nucleated brain regions do not display specific cilia directionality. We further discovered that the cell bodies of principal neurons in inside-out laminated regions spanning from the hippocampal CA1 region to neocortex undergo a slow 'reverse movement' for postnatal positioning and lamina refinement. Furthermore, selective disruption of cilia function in the forebrain leads to altered lamination and gyrification in the retrosplenial cortex that is formed by reverse movement. Collectively, this study identifies reverse movement as a fundamental process for principal cell positioning that refines lamination in the cerebral cortex and casts light on the evolutionary transition from three-layered allocortices to six-layered neocortices.
目前,关于神经元定位以及初级纤毛在出生后神经发育中的作用,我们所知甚少。我们发现,在小鼠大脑皮质中,与出生后神经元定位同时发生的是,主要神经元的初级纤毛在定位和方向上发生显著变化。紧密层中早出生和晚出生的主要神经元的初级纤毛显示出相反的方向,而疏松层中的神经元初级纤毛主要朝向软脑膜。相比之下,星形胶质细胞、中间神经元以及有核脑区的神经元则不显示特定的纤毛方向性。我们进一步发现,从海马CA1区到新皮质的由内向外分层区域中的主要神经元的细胞体,为了出生后定位和分层细化会经历缓慢的“反向运动”。此外,前脑纤毛功能的选择性破坏会导致由反向运动形成的扣带后皮质的分层和脑回形成改变。总体而言,本研究将反向运动确定为主要细胞定位的一个基本过程,该过程可细化大脑皮质的分层,并揭示从三层古皮质到六层新皮质的进化转变。