Glibert Pieter, Meert Paulien, Van Steendam Katleen, Martens Lennart, Deforce Dieter, Dhaenens Maarten
Laboratory of Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium.
Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium ; Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.
Data Brief. 2015 May 6;4:60-5. doi: 10.1016/j.dib.2015.04.012. eCollection 2015 Sep.
The ability to distinguish between phosphopeptides of high and low stoichiometry is essential to discover the true extent of protein phosphorylation. We here extend the strategy whereby a peptide sample is briefly split in two identical parts and differentially labeled preceding the phosphatase treatment of one part (Pflieger et al., 2008. Mol. Cell. Proteomics, 7: 326-46 [1]; Wu et al., 2011. Nat. Methods, 8: 677-83 [2]). Our Phospho-iTRAQ method focuses on the unmodified counterparts of phosphorylated peptides, which thus circumvents the ionization, fragmentation, and phospho-enrichment difficulties that hamper quantitation of stoichiometry in most common phosphoproteomics methods. Since iTRAQ enables multiplexing, simultaneous (phospho)proteome comparison between internal replicates and multiple samples is possible. The technique was validated on multiple instrument platforms by adding internal standards of high stoichiometry to a complex lysate of control and EGF-stimulated HeLa cells. To demonstrate the flexibility of PhosphoiTRAQ with regards to the experimental setup and data mining, the proteome coverage was extended through gel fractionation, while an internal replicate measurement creates more stringent data analysis opportunities. The latter allows other researchers to set their own threshold for selecting potential phosphorylation events in the dataset presented here, depending on the biological question or corroboration under investigation. The latest developments in MS instrumentation promise to further increase the resolution of the stoichiometric measurement of Phospho-iTRAQ in the future. The data accompanying the manuscript on this approach (Glibert et al., 2015, J. Proteome Res. 14: 2015, 839-49 [5]) have been deposited to the ProteomeXchange with identifier PXD001574.
区分高化学计量比和低化学计量比的磷酸肽的能力对于发现蛋白质磷酸化的真实程度至关重要。我们在此扩展了一种策略,即将肽样品短暂地分成两个相同的部分,并在对其中一部分进行磷酸酶处理之前进行差异标记(Pflieger等人,2008年。《分子与细胞蛋白质组学》,7:326 - 46 [1];Wu等人,2011年。《自然方法》,8:677 - 83 [2])。我们的磷酸化iTRAQ方法聚焦于磷酸化肽的未修饰对应物,从而规避了阻碍大多数常见磷酸蛋白质组学方法中化学计量比定量的电离、碎片化和磷酸富集难题。由于iTRAQ能够进行多重分析,因此可以在内部重复样本和多个样本之间同时进行(磷酸化)蛋白质组比较。通过向对照和表皮生长因子刺激的HeLa细胞的复杂裂解物中添加高化学计量比的内标,该技术在多个仪器平台上得到了验证。为了证明磷酸化iTRAQ在实验设置和数据挖掘方面的灵活性,通过凝胶分级分离扩展了蛋白质组覆盖范围,同时内部重复测量创造了更严格的数据分析机会。后者使其他研究人员能够根据所研究的生物学问题或确证,在此处呈现的数据集中设置自己选择潜在磷酸化事件的阈值。质谱仪器的最新进展有望在未来进一步提高磷酸化iTRAQ化学计量测量的分辨率。关于此方法的论文所附带的数据(Glibert等人,2015年,《蛋白质组研究杂志》,14:2015,839 - 49 [5])已存入蛋白质组交换库,标识符为PXD001574。