Pangerc Urška, Jager Franc
Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
Physiol Meas. 2015 Aug;36(8):1645-64. doi: 10.1088/0967-3334/36/8/1645. Epub 2015 Jul 28.
In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).
在这项工作中,我们展示了一种用于多模态记录的新型强大心跳检测器的开发、架构及评估。该检测器使用心电图(ECG)信号,和/或搏动(P)信号,如存在的话,还包括血压、动脉血压和肺动脉压。检测器架构背后的基本方法是收集信号能量(进行微分和低通滤波、平方、积分)。为了计算检测和噪声函数,设计了简单快速的斜率和峰值敏感带通数字滤波器。通过使用形态学平滑,进一步改进了检测函数并估计了噪声区间。该检测器寻找可能的起搏器心率模式并修复ECG信号和检测函数。通过两个步骤在每个ECG和P信号中检测心跳:重复学习阶段和后续检测阶段。从ECG信号中检测到的心跳位置合并为单个检测到的ECG心跳位置流。对合并后的ECG心跳位置和从P信号中检测到的心跳位置就预期心率的规律性进行验证。选择与合并后的ECG心跳位置最匹配的P信号的检测到的心跳位置,以映射到记录的噪声和无信号区间。在Physionet网站上免费提供的数据库上获得的平均灵敏度和阳性预测值方面的总体评估分数如下:麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库(99.91%)、麻省总医院/麻省理工学院波形数据库(95.14%)、2014年PhysioNet/计算心脏病学挑战赛后续阶段的增强训练集(97.67%)以及挑战赛测试集(93.64%)。