Suppr超能文献

基于隐马尔可夫模型的利用心电图和动脉压力信号的心跳检测器。

Hidden Markov model-based heartbeat detector using electrocardiogram and arterial pressure signals.

作者信息

Altuve Miguel, Monroy Nelson F

机构信息

Valencian International University, Valencia, Spain.

Applied Biophysics and Bioengineering Group, Simon Bolivar University, Caracas, Venezuela.

出版信息

Biomed Eng Lett. 2021 Jun 3;11(3):249-261. doi: 10.1007/s13534-021-00192-x. eCollection 2021 Aug.

Abstract

UNLABELLED

The automatic detection of a heartbeat is commonly performed by detecting the QRS complex in the electrocardiogram (ECG), however, various noise sources and missing data can jeopardize the reliability of the ECG. Therefore, there is a growing interest in combining the information from many physiological signals to accurately detect heartbeats. To this end, hidden Markov models (HMMs) are used in this work to jointly exploit the information from ECG, arterial blood pressure (ABP) and pulmonary arterial pressure (PAP) signals in order to conceive a heartbeat detector. After preprocessing the physiological signals, a sliding window is used to extract an observation sequence to be passed through two HMMs (previously trained on a training dataset) in order to obtain the log-likelihoods of observation and signals a detection if the difference of log-likelihoods exceeds an adaptive threshold. Several HMM-based heartbeat detectors were conceived to exploit the information from the ECG, ABP and PAP signals from the MIT-BIH Arrhythmia, PhysioNet Computing in Cardiology Challenge 2014, and MGH/MF Waveform databases. A grid search methodology was used to optimize the duration of the observation sequence and a multiplicative factor to form the adaptive threshold. Using the optimal parameters found on a training database through 10-fold cross-validation, sensitivity and positive predictivity above 99% were obtained on the MIT-BIH Arrhythmia and PhysioNet Computing in Cardiology Challenge 2014 databases, while they are above 95% in the MGH/MF waveform database using ECG and ABP signals. Our detector approach showed detection performances comparable with the literature in the three databases.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13534-021-00192-x.

摘要

未标注

心跳的自动检测通常通过检测心电图(ECG)中的QRS复合波来进行,然而,各种噪声源和数据缺失会危及心电图的可靠性。因此,将来自多种生理信号的信息结合起来以准确检测心跳的兴趣日益浓厚。为此,本研究使用隐马尔可夫模型(HMM)来联合利用心电图、动脉血压(ABP)和肺动脉压(PAP)信号中的信息,以构建一个心跳检测器。在对生理信号进行预处理后,使用滑动窗口提取一个观察序列,该序列将通过两个HMM(先前在训练数据集上进行训练),以便获得观察的对数似然值,如果对数似然值的差异超过自适应阈值,则发出检测信号。构思了几种基于HMM的心跳检测器,以利用来自麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库、2014年生理网心脏病学计算挑战赛数据库以及MGH/MF波形数据库中的心电图、ABP和PAP信号的信息。使用网格搜索方法来优化观察序列的持续时间和一个乘法因子以形成自适应阈值。通过在训练数据库上进行10折交叉验证找到最优参数后,在麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库和2014年生理网心脏病学计算挑战赛数据库上获得了高于99%的灵敏度和阳性预测值,而在使用心电图和ABP信号的MGH/MF波形数据库中,这两个指标高于95%。我们的检测器方法在三个数据库中的检测性能与文献相当。

补充信息

在线版本包含可在10.1007/s13534 - 021 - 00192 - x获取的补充材料。

相似文献

1
Hidden Markov model-based heartbeat detector using electrocardiogram and arterial pressure signals.
Biomed Eng Lett. 2021 Jun 3;11(3):249-261. doi: 10.1007/s13534-021-00192-x. eCollection 2021 Aug.
2
Robust detection of heartbeats using association models from blood pressure and EEG signals.
Biomed Eng Online. 2016 Jan 15;15:7. doi: 10.1186/s12938-016-0122-0.
3
Heartbeat detection in multimodal physiological signals using signal quality assessment based on sample entropy.
Australas Phys Eng Sci Med. 2017 Dec;40(4):917-923. doi: 10.1007/s13246-017-0585-8. Epub 2017 Sep 8.
4
Heart beat detection using a multimodal data coupling method.
Physiol Meas. 2015 Aug;36(8):1729-42. doi: 10.1088/0967-3334/36/8/1729. Epub 2015 Jul 28.
5
Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.
Physiol Meas. 2015 Aug;36(8):1645-64. doi: 10.1088/0967-3334/36/8/1645. Epub 2015 Jul 28.
6
A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm.
Comput Methods Programs Biomed. 2017 Jun;144:61-75. doi: 10.1016/j.cmpb.2017.02.028. Epub 2017 Mar 18.
7
Robust Heartbeat Detection From Multimodal Data via CNN-Based Generalizable Information Fusion.
IEEE Trans Biomed Eng. 2019 Mar;66(3):710-717. doi: 10.1109/TBME.2018.2854899. Epub 2018 Jul 11.
8
Robust heartbeat detection using multimodal recordings and ECG quality assessment with signal amplitudes dispersion.
Comput Methods Programs Biomed. 2018 Sep;163:169-182. doi: 10.1016/j.cmpb.2018.06.009. Epub 2018 Jun 20.
9
Robust electrocardiogram delineation model for automatic morphological abnormality interpretation.
Sci Rep. 2023 Aug 23;13(1):13736. doi: 10.1038/s41598-023-40965-1.
10
A new approach for identification of heartbeats in multimodal physiological signals.
J Med Eng Technol. 2018 Apr;42(3):182-186. doi: 10.1080/03091902.2018.1457093. Epub 2018 Apr 19.

本文引用的文献

1
Characteristics of Circadian Blood Pressure Pattern of Hypertensive Patients According to Localization of Fragmented QRS on Electrocardiography.
High Blood Press Cardiovasc Prev. 2021 Jan;28(1):57-62. doi: 10.1007/s40292-020-00422-w. Epub 2020 Nov 20.
2
There's plenty of room at the Top: What will drive computer performance after Moore's law?
Science. 2020 Jun 5;368(6495). doi: 10.1126/science.aam9744.
3
Multimodal Photoplethysmography-Based Approaches for Improved Detection of Hypertension.
J Clin Med. 2020 Apr 22;9(4):1203. doi: 10.3390/jcm9041203.
5
Assessment of automatic strategies for combining QRS detections by multiple algorithms in multiple leads.
Physiol Meas. 2019 Dec 3;40(11):114002. doi: 10.1088/1361-6579/ab553a.
6
Multiple Physiological Signals Fusion Techniques for Improving Heartbeat Detection: A Review.
Sensors (Basel). 2019 Oct 29;19(21):4708. doi: 10.3390/s19214708.
7
Optimal data fusion for the improvement of QRS complex detection in multi-channel ECG recordings.
Med Biol Eng Comput. 2019 Aug;57(8):1673-1681. doi: 10.1007/s11517-019-01990-3. Epub 2019 May 17.
8
An Efficient and Robust Digital Fractional Order Differentiator Based ECG Pre-Processor Design for QRS Detection.
IEEE Trans Biomed Circuits Syst. 2019 Aug;13(4):682-696. doi: 10.1109/TBCAS.2019.2916676. Epub 2019 May 13.
9
Efficient QRS complex detection algorithm based on Fast Fourier Transform.
Biomed Eng Lett. 2018 Oct 25;9(1):145-151. doi: 10.1007/s13534-018-0087-y. eCollection 2019 Feb.
10
ECG R-wave peaks marking with simultaneously recorded continuous blood pressure.
PLoS One. 2019 Mar 28;14(3):e0214443. doi: 10.1371/journal.pone.0214443. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验