Altuve Miguel, Monroy Nelson F
Valencian International University, Valencia, Spain.
Applied Biophysics and Bioengineering Group, Simon Bolivar University, Caracas, Venezuela.
Biomed Eng Lett. 2021 Jun 3;11(3):249-261. doi: 10.1007/s13534-021-00192-x. eCollection 2021 Aug.
The automatic detection of a heartbeat is commonly performed by detecting the QRS complex in the electrocardiogram (ECG), however, various noise sources and missing data can jeopardize the reliability of the ECG. Therefore, there is a growing interest in combining the information from many physiological signals to accurately detect heartbeats. To this end, hidden Markov models (HMMs) are used in this work to jointly exploit the information from ECG, arterial blood pressure (ABP) and pulmonary arterial pressure (PAP) signals in order to conceive a heartbeat detector. After preprocessing the physiological signals, a sliding window is used to extract an observation sequence to be passed through two HMMs (previously trained on a training dataset) in order to obtain the log-likelihoods of observation and signals a detection if the difference of log-likelihoods exceeds an adaptive threshold. Several HMM-based heartbeat detectors were conceived to exploit the information from the ECG, ABP and PAP signals from the MIT-BIH Arrhythmia, PhysioNet Computing in Cardiology Challenge 2014, and MGH/MF Waveform databases. A grid search methodology was used to optimize the duration of the observation sequence and a multiplicative factor to form the adaptive threshold. Using the optimal parameters found on a training database through 10-fold cross-validation, sensitivity and positive predictivity above 99% were obtained on the MIT-BIH Arrhythmia and PhysioNet Computing in Cardiology Challenge 2014 databases, while they are above 95% in the MGH/MF waveform database using ECG and ABP signals. Our detector approach showed detection performances comparable with the literature in the three databases.
The online version contains supplementary material available at 10.1007/s13534-021-00192-x.
心跳的自动检测通常通过检测心电图(ECG)中的QRS复合波来进行,然而,各种噪声源和数据缺失会危及心电图的可靠性。因此,将来自多种生理信号的信息结合起来以准确检测心跳的兴趣日益浓厚。为此,本研究使用隐马尔可夫模型(HMM)来联合利用心电图、动脉血压(ABP)和肺动脉压(PAP)信号中的信息,以构建一个心跳检测器。在对生理信号进行预处理后,使用滑动窗口提取一个观察序列,该序列将通过两个HMM(先前在训练数据集上进行训练),以便获得观察的对数似然值,如果对数似然值的差异超过自适应阈值,则发出检测信号。构思了几种基于HMM的心跳检测器,以利用来自麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库、2014年生理网心脏病学计算挑战赛数据库以及MGH/MF波形数据库中的心电图、ABP和PAP信号的信息。使用网格搜索方法来优化观察序列的持续时间和一个乘法因子以形成自适应阈值。通过在训练数据库上进行10折交叉验证找到最优参数后,在麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库和2014年生理网心脏病学计算挑战赛数据库上获得了高于99%的灵敏度和阳性预测值,而在使用心电图和ABP信号的MGH/MF波形数据库中,这两个指标高于95%。我们的检测器方法在三个数据库中的检测性能与文献相当。
在线版本包含可在10.1007/s13534 - 021 - 00192 - x获取的补充材料。