Wannakao Sippakorn, Artrith Nongnuch, Limtrakul Jumras, Kolpak Alexie M
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA).
Department of Chemistry and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900 (Thailand).
ChemSusChem. 2015 Aug 24;8(16):2745-51. doi: 10.1002/cssc.201500245. Epub 2015 Jul 17.
The design of catalysts for CO2 reduction is challenging because of the fundamental relationships between the binding energies of the reaction intermediates. Metal carbides have shown promise for transcending these relationships and enabling low-cost alternatives. Herein, we show that directional bonding arising from the mixed covalent/metallic character plays a critical role in governing the surface chemistry. This behavior can be described by consideration of individual d-band components. We use this model to predict efficient catalysts based on tungsten carbide with a sub-monolayer of iron adatoms. Our approach can be used to predict site-preference and binding-energy trends for complex catalyst surfaces.
由于反应中间体的结合能之间存在基本关系,二氧化碳还原催化剂的设计具有挑战性。金属碳化物已显示出超越这些关系并实现低成本替代方案的潜力。在此,我们表明,由混合共价/金属特性产生的定向键合在控制表面化学方面起着关键作用。这种行为可以通过考虑单个d带成分来描述。我们使用该模型来预测基于具有亚单层铁吸附原子的碳化钨的高效催化剂。我们的方法可用于预测复杂催化剂表面的位点偏好和结合能趋势。