Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom.
Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK, and Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, United Kingdom.
Conserv Biol. 2015 Dec;29(6):1615-25. doi: 10.1111/cobi.12571. Epub 2015 Jul 28.
Marine protected areas (MPAs) are the cornerstone of most marine conservation strategies, but the effectiveness of each one partly depends on its size and distance to other MPAs in a network. Despite this, current recommendations on ideal MPA size and spacing vary widely, and data are lacking on how these constraints might influence the overall spatial characteristics, socio-economic impacts, and connectivity of the resultant MPA networks. To address this problem, we tested the impact of applying different MPA size constraints in English waters. We used the Marxan spatial prioritization software to identify a network of MPAs that met conservation feature targets, whilst minimizing impacts on fisheries; modified the Marxan outputs with the MinPatch software to ensure each MPA met a minimum size; and used existing data on the dispersal distances of a range of species found in English waters to investigate the likely impacts of such spatial constraints on the region's biodiversity. Increasing MPA size had little effect on total network area or the location of priority areas, but as MPA size increased, fishing opportunity cost to stakeholders increased. In addition, as MPA size increased, the number of closely connected sets of MPAs in networks and the average distance between neighboring MPAs decreased, which consequently increased the proportion of the planning region that was isolated from all MPAs. These results suggest networks containing large MPAs would be more viable for the majority of the region's species that have small dispersal distances, but dispersal between MPA sets and spill-over of individuals into unprotected areas would be reduced. These findings highlight the importance of testing the impact of applying different MPA size constraints because there are clear trade-offs that result from the interaction of size, number, and distribution of MPAs in a network.
海洋保护区(MPA)是大多数海洋保护策略的基石,但每个保护区的有效性部分取决于其大小以及与网络中其他保护区的距离。尽管如此,目前关于理想 MPA 大小和间距的建议差异很大,并且缺乏有关这些限制如何影响最终 MPA 网络的整体空间特征、社会经济影响和连通性的数据。为了解决这个问题,我们测试了在英国水域应用不同 MPA 大小限制的影响。我们使用 Marxan 空间优先级软件来确定一个满足保护特征目标的 MPA 网络,同时最大限度地减少对渔业的影响;使用 MinPatch 软件修改 Marxan 的输出结果,以确保每个 MPA 都达到最小尺寸;并利用现有的关于在英国水域发现的一系列物种扩散距离的数据,研究这种空间限制对该地区生物多样性的可能影响。增加 MPA 的大小对总网络面积或优先区域的位置几乎没有影响,但随着 MPA 大小的增加,利益相关者的捕鱼机会成本增加。此外,随着 MPA 大小的增加,网络中紧密相连的 MPA 集合的数量和相邻 MPA 之间的平均距离减少,这导致规划区域中与所有 MPA 隔离的比例增加。这些结果表明,对于大多数具有较小扩散距离的地区物种来说,包含大型 MPA 的网络将更具可行性,但 MPA 集合之间的扩散和个体溢出到未保护区的情况将会减少。这些发现强调了测试应用不同 MPA 大小限制的影响的重要性,因为在网络中 MPA 的大小、数量和分布的相互作用会产生明显的权衡。