Suppr超能文献

珊瑚礁鱼类幼鱼的扩散和移动模式及其对海洋保护区网络设计的意义。

Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design.

机构信息

The Nature Conservancy, 245 Riverside Drive, West End, Brisbane, Queensland, Australia 4101.

Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia 4810.

出版信息

Biol Rev Camb Philos Soc. 2015 Nov;90(4):1215-47. doi: 10.1111/brv.12155. Epub 2014 Nov 25.

Abstract

Well-designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1-0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5-3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3-10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5-15 km, and self-recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.

摘要

设计良好且管理有效的海洋保护区网络,对于渔业管理和生物多样性保护而言,都是十分有效的工具。连通性是指通过个体(幼虫、幼鱼或成鱼)的扩散将局部种群连接起来的一种关键生态因素,在海洋保护区设计中需要考虑这一因素,因为它对复种群落的持续存在及其从干扰中恢复具有重要意义。为了使海洋保护区能够保护生物多样性并增强受捕捞区物种的数量,它们必须能够在其边界内维持焦点物种(特别是渔业物种),并且彼此之间的间隔要合理,以便能够作为相互补充的网络发挥作用,同时为受捕捞区提供补充繁殖群体。因此,网络内各个保护区的配置(大小、间隔和位置)应根据需要保护的物种的幼虫扩散和移动模式来确定。过去,负责海洋保护区设计的从业人员无法获得或无法获取许多热带海洋物种的成鱼和幼鱼的幼虫扩散和移动模式的经验数据。最近使用新技术进行的实证研究也为许多物种的移动模式提供了新的见解,并通过幼虫扩散重新定义了我们对种群间连通性的理解。我们对 34 个科(210 个物种)的珊瑚礁鱼类的移动模式进行了综述,结果表明,移动模式(家域、个体发育变化和产卵洄游)在物种之间和内部存在差异,并且受到一系列因素的影响(例如大小、性别、行为、密度、栖息地特征、季节、潮汐和时间)。一些物种的移动距离<0.1-0.5 公里(例如雀鲷、蝴蝶鱼和神仙鱼)、<0.5-3 公里(例如大多数鹦嘴鱼、羊鱼和鲷鱼)或 3-10 公里(例如大型鹦嘴鱼和鲷鱼),而其他物种的移动距离为数十到数百公里(例如一些石斑鱼、石斑鱼、鲷鱼和鲹鱼)或数千公里(例如一些鲨鱼和金枪鱼)。幼虫的扩散距离往往<5-15 公里,自我补充现象很常见。综合这些信息,使我们首次能够针对热带海洋生态系统中的各种生物,提供有关海洋保护区的大小、间隔和位置的具体建议,以便为各种分类群的保护和渔业管理带来最大的效益。我们建议:(i)海洋保护区的面积应超过焦点物种家域(各个方向)的两倍,因此,根据需要保护的物种、它们的移动距离以及保护区外是否存在其他有效保护措施,需要建设各种大小的保护区;(ii)保护区之间的间隔应<15 公里,小保护区之间的间隔应更近;(iii)海洋保护区应包括对焦点物种的生活史至关重要的生境(例如家域、育幼地、洄游走廊和产卵聚集区),并应根据这些生境的移动模式进行布局。我们还为从业人员提供了有关如何在更广泛的生态、社会经济和管理背景下使用这些信息来设计、评估和监测海洋保护区网络有效性的实用建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验