Ho Jia-Jung, Skoff David R, Ghosh Ayanjeet, Zanni Martin T
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
J Phys Chem B. 2015 Aug 20;119(33):10586-96. doi: 10.1021/acs.jpcb.5b07078. Epub 2015 Aug 10.
DNA-covered materials are important in technological applications such as biosensors and microarrays, but obtaining structural information on surface-bound biomolecules is experimentally challenging. In this paper, we structurally characterize single-stranded DNA monolayers of poly(thymine) from 10 to 25 bases in length with an emerging surface technique called two-dimensional sum frequency generation (2D SFG) spectroscopy. These experiments are carried out by adding a mid-IR pulse shaper to a femtosecond broad-band SFG spectrometer. Cross peaks and 2D line shapes in the 2D SFG spectra provide information about structure and dynamics. Because the 2D SFG spectra are heterodyne detected, the monolayer spectra can be directly compared to 2D infrared (2D IR) spectra of poly(thymine) in solution, which aids interpretation. We simulate the 2D SFG spectra using DFT calculations and an excitonic Hamiltonian that relates the molecular geometry to the vibrational coupling. Intrabase cross peaks help define the orientation of the bases and interbase cross peaks, created by coupling between bases, and resolves features not observed in 1D SFG spectra that constrain the relative geometries of stacked bases. We present a structure for the poly(T) oligomer that is consistent with the 2D SFG data. These experiments provide insight into the DNA monolayer structure and set precedent for studying complex biomolecules on surfaces with 2D SFG spectroscopy.
覆盖有DNA的材料在生物传感器和微阵列等技术应用中很重要,但获取表面结合生物分子的结构信息在实验上具有挑战性。在本文中,我们使用一种新兴的表面技术——二维和频产生(2D SFG)光谱,对长度为10至25个碱基的聚(胸腺嘧啶)单链DNA单层进行结构表征。这些实验是通过在飞秒宽带SFG光谱仪上添加一个中红外脉冲整形器来进行的。2D SFG光谱中的交叉峰和二维线形提供了有关结构和动力学的信息。由于2D SFG光谱是外差检测的,单层光谱可以直接与溶液中聚(胸腺嘧啶)的二维红外(2D IR)光谱进行比较,这有助于解释。我们使用密度泛函理论(DFT)计算和一个将分子几何结构与振动耦合联系起来的激子哈密顿量来模拟2D SFG光谱。碱基内交叉峰有助于确定碱基的取向,而碱基间交叉峰是由碱基之间的耦合产生的,它解析了在一维SFG光谱中未观察到的特征,这些特征限制了堆叠碱基的相对几何结构。我们提出了一种与2D SFG数据一致的聚(T)寡聚物结构。这些实验为DNA单层结构提供了深入了解,并为用2D SFG光谱研究表面复杂生物分子开创了先例。