Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
J Chem Phys. 2024 Sep 7;161(9). doi: 10.1063/5.0220479.
Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N-H stretch of DNA base pairs and the O-H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove "spine of hydration" is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration.
能够选择性地探测 DNA 小沟、大沟和磷酸骨架处水分子的实验方法对于理解水合如何影响 DNA 结构和功能至关重要。手性选择性和频产生光谱(chiral SFG)在振动光谱学中是独特的,因为它可以选择性地探测在生物分子周围形成手性水合结构的水分子。然而,由于水和生物分子都可以产生手性 SFG 信号,因此解释手性 SFG 光谱具有挑战性。在这里,我们结合实验和计算,为 DNA 的手性 SFG 光谱的严格解释建立了一个理论框架。我们证明,手性 SFG 检测 DNA 碱基对的 N-H 伸缩和水分子的 O-H 伸缩,专门探测 DNA 第一水合壳层中的水分子。我们的分析表明,DNA 仅将手性传递给第一水合壳层内的水分子,因此可以通过手性 SFG 光谱进行探测。超出第一水合壳层后,电场诱导的水结构是对称的,因此排除了手性 SFG 响应。此外,我们发现手性 SFG 可以区分小沟、大沟和磷酸骨架处第一水合壳层水分子的手性亚群。我们的发现挑战了主导科学界 40 多年的观点,即小沟“水合脊柱”是围绕 DNA 双螺旋的唯一手性水结构。通过确定 DNA 手性 SFG 光谱的分子起源,我们为应用手性 SFG 探索 DNA 水合的化学和生物物理奠定了坚实的实验和理论基础。