Korte Carsten, Schichtel N, Hesse D, Janek J
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany.
Max-Planck-Institut für Mikrostrukturphysik, Halle (Saale), Germany.
Monatsh Chem. 2009;140(9):1069-1080. doi: 10.1007/s00706-009-0125-7. Epub 2009 Mar 27.
Internal and external interfaces in solids exhibit completely different transport properties compared to the bulk. Transport parallel to grain or phase boundaries is usually strongly enhanced. Transport perpendicular to an interface is usually blocked, i.e., transport across an interface is often much slower. Due to the high density of interfaces in modern micro- and nanoscaled devices, a severe influence on the total transport properties can be expected. In contrast to diffusion in metal grain boundaries, transport phenomena in boundaries of ionic materials are still less understood. The specific transport properties along metal grain boundaries are explained by structural factors like packing densities or dislocation densities in the interface region. In most studies dealing with ionic materials, the interfacial transport properties are merely explained by the influence of space charge regions. In this study the influence of the interface structure on the interfacial transport properties of ionic materials is discussed in analogy to metallic materials. A qualitative model based on the density of misfit dislocations and on interfacial strain is introduced for (untilted and untwisted) phase boundaries. For experimental verification, the interfacial ionic conductivity of different multilayer systems consisting of stabilised ZrO and an insulating oxide is investigated as a funtion of structural mismatch. As predicted by the model, the interfacial conductivity increases when the lattice mismatch is increased.
与体材料相比,固体中的内部和外部界面表现出完全不同的输运特性。平行于晶界或相界的输运通常会显著增强。垂直于界面的输运通常会受阻,即跨界面的输运往往要慢得多。由于现代微纳尺度器件中界面密度很高,可以预期会对总输运特性产生严重影响。与金属晶界中的扩散不同,离子材料界面中的输运现象仍不太为人所理解。沿金属晶界的特定输运特性由诸如界面区域中的堆积密度或位错密度等结构因素来解释。在大多数涉及离子材料的研究中,界面输运特性仅仅由空间电荷区的影响来解释。在本研究中,类似于金属材料,讨论了界面结构对离子材料界面输运特性的影响。针对(无倾斜和无扭转的)相界,引入了一个基于错配位错密度和界面应变的定性模型。为了进行实验验证,研究了由稳定的ZrO和一种绝缘氧化物组成的不同多层系统的界面离子电导率随结构失配的变化。正如模型所预测的,当晶格失配增加时,界面电导率会增加。