Suppr超能文献

运用信息论识别重症监护病房常见实验室检查中的冗余信息。

Using information theory to identify redundancy in common laboratory tests in the intensive care unit.

作者信息

Lee Joon, Maslove David M

机构信息

School of Public Health and Health Systems, University of Waterloo, Waterloo, Canada.

Department of Medicine & Critical Care Program, Queen's University, Kingston, Canada.

出版信息

BMC Med Inform Decis Mak. 2015 Jul 31;15:59. doi: 10.1186/s12911-015-0187-x.

Abstract

BACKGROUND

Clinical workflow is infused with large quantities of data, particularly in areas with enhanced monitoring such as the Intensive Care Unit (ICU). Information theory can quantify the expected amounts of total and redundant information contained in a given clinical data type, and as such has the potential to inform clinicians on how to manage the vast volumes of data they are required to analyze in their daily practice. The objective of this proof-of-concept study was to quantify the amounts of redundant information associated with common ICU lab tests.

METHODS

We analyzed the information content of 11 laboratory test results from 29,149 adult ICU admissions in the MIMIC II database. Information theory was applied to quantify the expected amount of redundant information both between lab values from the same ICU day, and between consecutive ICU days.

RESULTS

Most lab values showed a decreasing trend over time in the expected amount of novel information they contained. Platelet, blood urea nitrogen (BUN), and creatinine measurements exhibited the most amount of redundant information on days 2 and 3 compared to the previous day. The creatinine-BUN and sodium-chloride pairs had the most redundancy.

CONCLUSIONS

Information theory can help identify and discourage unnecessary testing and bloodwork, and can in general be a useful data analytic technique for many medical specialties that deal with information overload.

摘要

背景

临床工作流程中充斥着大量数据,尤其是在诸如重症监护病房(ICU)这种监测强化的领域。信息论可以量化给定临床数据类型中所含的总信息和冗余信息的预期数量,因此有潜力告知临床医生如何管理他们在日常实践中需要分析的大量数据。这项概念验证研究的目的是量化与常见ICU实验室检查相关的冗余信息量。

方法

我们分析了MIMIC II数据库中29149例成年ICU入院患者的11项实验室检查结果的信息内容。应用信息论来量化同一ICU日的实验室值之间以及连续ICU日之间冗余信息的预期数量。

结果

大多数实验室值随着时间推移,其所含新信息的预期数量呈下降趋势。与前一天相比,血小板、血尿素氮(BUN)和肌酐测量值在第2天和第3天表现出最多的冗余信息。肌酐 - BUN和钠 - 氯组合具有最多的冗余。

结论

信息论有助于识别并减少不必要的检查和血液检测,总体而言,对于许多应对信息过载的医学专业来说,它可能是一种有用的数据分析技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99a8/4521317/0ddeb13db663/12911_2015_187_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验