Suppr超能文献

利用人工智能减少 ICU 中的不必要实验室检测。

Reducing unnecessary lab testing in the ICU with artificial intelligence.

机构信息

Massachusetts Institute of Technology, Engineering Systems Division, 77 Massachusetts Avenue, 02139 Cambridge, MA, USA.

出版信息

Int J Med Inform. 2013 May;82(5):345-58. doi: 10.1016/j.ijmedinf.2012.11.017. Epub 2012 Dec 28.

Abstract

OBJECTIVES

To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes.

DESIGN

Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not.

PATIENTS

Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding.

MAIN RESULTS

Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3].

CONCLUSIONS

Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future lab testing for eight common GI related lab tests. Future work will explore applications of this approach to a range of underlying medical conditions and laboratory tests.

摘要

目的

通过预测拟议的未来实验室检测何时可能提供信息增益,从而影响胃肠道出血患者的临床管理,减少不必要的实验室检测。最近的研究表明,频繁的实验室检测不一定与更好的结果相关。

设计

进行了数据预处理、特征选择和分类,并使用人工智能工具模糊建模来识别不会提供信息增益的实验室检测。共有 11 个输入变量。其中 10 个变量来自床边监护仪趋势(心率、血氧饱和度、呼吸频率、体温、血压和尿液采集)以及输液产品和输血。最后一个输入变量是要预测的八个实验室检测之一的前一个值:钙、PTT、血细胞比容、纤维蛋白原、乳酸、血小板、INR 和血红蛋白。每个检测的结果是一个二进制框架,定义检测结果是否提供信息增益。

患者

预测模型应用于识别胃肠道出血的真实 ICU 数据库中 746 例患者的不必要实验室检测。

主要结果

对于所有 8 个实验室检测,必要和不必要实验室检测的分类准确率均超过 80%。所有结果的灵敏度和特异性均令人满意。平均减少了 50%的实验室检测。这比以前报道的类似研究(平均性能为 37%)[1-3]有了显著的改进。

结论

减少频繁的实验室检测以及潜在的临床和财务影响是重症监护的一个重要问题。在这项工作中,我们提出了一种人工智能方法来预测拟议的未来实验室检测的获益。使用来自 746 例胃肠道出血患者的 ICU 数据和 11 项测量值,我们证明了在预测八个常见胃肠道相关实验室检测的未来检测中可能获得的信息方面具有很高的准确性。未来的工作将探索该方法在一系列潜在医学状况和实验室检测中的应用。

相似文献

1
Reducing unnecessary lab testing in the ICU with artificial intelligence.
Int J Med Inform. 2013 May;82(5):345-58. doi: 10.1016/j.ijmedinf.2012.11.017. Epub 2012 Dec 28.
5
Prediction of survival of ICU patients using computational intelligence.
Comput Biol Med. 2014 Apr;47:13-9. doi: 10.1016/j.compbiomed.2013.12.012. Epub 2014 Jan 15.
6
A decision support system to facilitate management of patients with acute gastrointestinal bleeding.
Artif Intell Med. 2008 Mar;42(3):247-59. doi: 10.1016/j.artmed.2007.10.003. Epub 2007 Dec 11.
8
Eliminating needless testing in intensive care--an information-based team management approach.
Crit Care Med. 1993 Oct;21(10):1452-8. doi: 10.1097/00003246-199310000-00011.
10
Using information theory to identify redundancy in common laboratory tests in the intensive care unit.
BMC Med Inform Decis Mak. 2015 Jul 31;15:59. doi: 10.1186/s12911-015-0187-x.

引用本文的文献

1
2
Barriers and facilitators to utilizing digital health technologies by healthcare professionals.
NPJ Digit Med. 2023 Sep 18;6(1):161. doi: 10.1038/s41746-023-00899-4.
3
Prediction of ICU Patients' Deterioration Using Machine Learning Techniques.
Cureus. 2023 May 7;15(5):e38659. doi: 10.7759/cureus.38659. eCollection 2023 May.
4
Confidence-based laboratory test reduction recommendation algorithm.
BMC Med Inform Decis Mak. 2023 May 10;23(1):93. doi: 10.1186/s12911-023-02187-3.
7
External Validation of a Laboratory Prediction Algorithm for the Reduction of Unnecessary Labs in the Critical Care Setting.
Am J Med. 2022 Jun;135(6):769-774. doi: 10.1016/j.amjmed.2021.12.020. Epub 2022 Jan 31.
9
Prediction of blood lactate values in critically ill patients: a retrospective multi-center cohort study.
J Clin Monit Comput. 2022 Aug;36(4):1087-1097. doi: 10.1007/s10877-021-00739-4. Epub 2021 Jul 5.
10
Iatrogenic anaemia and transfusion thresholds in ICU patients with COVID-19 disease at a tertiary care hospital.
Transfus Apher Sci. 2021 Apr;60(2):103068. doi: 10.1016/j.transci.2021.103068. Epub 2021 Jan 22.

本文引用的文献

1
A fuzzy model for processing and monitoring vital signs in ICU patients.
Biomed Eng Online. 2011 Aug 3;10:68. doi: 10.1186/1475-925X-10-68.
2
Addressing the flaws of current critical alarms: a fuzzy constraint satisfaction approach.
Artif Intell Med. 2009 Nov;47(3):219-38. doi: 10.1016/j.artmed.2009.08.002. Epub 2009 Sep 30.
5
Laboratory testing in the intensive care unit.
Crit Care Clin. 2007 Jul;23(3):435-65. doi: 10.1016/j.ccc.2007.07.005.
6
A fuzzy logic based apnoea monitor for SIDS risk infants.
J Med Eng Technol. 2006 Nov-Dec;30(6):397-411. doi: 10.1080/03091900600590140.
7
Physician-attributable differences in intensive care unit costs: a single-center study.
Am J Respir Crit Care Med. 2006 Dec 1;174(11):1206-10. doi: 10.1164/rccm.200511-1810OC. Epub 2006 Sep 14.
8
Reducing unnecessary inpatient laboratory testing in a teaching hospital.
Am J Clin Pathol. 2006 Aug;126(2):200-6. doi: 10.1309/WP59-YM73-L6CE-GX2F.
10
Improved monitoring of preterm infants by Fuzzy Logic.
Technol Health Care. 1996 Aug;4(2):193-201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验