Allegue Catarina, Coll Mònica, Mates Jesus, Campuzano Oscar, Iglesias Anna, Sobrino Beatriz, Brion Maria, Amigo Jorge, Carracedo Angel, Brugada Pedro, Brugada Josep, Brugada Ramon
Cardiovascular Genetics Center, IdIBGi-Universitat de Girona, Girona, Spain.
Grupo Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain.
PLoS One. 2015 Jul 31;10(7):e0133037. doi: 10.1371/journal.pone.0133037. eCollection 2015.
The use of next-generation sequencing enables a rapid analysis of many genes associated with sudden cardiac death in diseases like Brugada Syndrome. Genetic variation is identified and associated with 30-35% of cases of Brugada Syndrome, with nearly 20-25% attributable to variants in SCN5A, meaning many cases remain undiagnosed genetically. To evaluate the role of genetic variants in arrhythmogenic diseases and the utility of next-generation sequencing, we applied this technology to resequence 28 main genes associated with arrhythmogenic disorders.
A cohort of 45 clinically diagnosed Brugada Syndrome patients classified as SCN5A-negative was analyzed using next generation sequencing. Twenty-eight genes were resequenced: AKAP9, ANK2, CACNA1C, CACNB2, CASQ2, CAV3, DSC2, DSG2, DSP, GPD1L, HCN4, JUP, KCNE1, KCNE2, KCNE3, KCNH2, KCNJ2, KCNJ5, KCNQ1, NOS1AP, PKP2, RYR2, SCN1B, SCN3B, SCN4B, SCN5A, SNTA1, and TMEM43. A total of 85 clinically evaluated relatives were also genetically analyzed to ascertain familial segregation.
Twenty-two patients carried 30 rare genetic variants in 12 genes, only 4 of which were previously associated with Brugada Syndrome. Neither insertion/deletion nor copy number variation were detected. We identified genetic variants in novel candidate genes potentially associated to Brugada Syndrome. These include: 4 genetic variations in AKAP9 including a de novo genetic variation in 3 positive cases; 5 genetic variations in ANK2 detected in 4 cases; variations in KCNJ2 together with CASQ2 in 1 case; genetic variations in RYR2, including a de novo genetic variation and desmosomal proteins encoding genes including DSG2, DSP and JUP, detected in 3 of the cases. Larger gene panels or whole exome sequencing should be considered to identify novel genes associated to Brugada Syndrome. However, application of approaches such as whole exome sequencing would difficult the interpretation for clinical purposes due to the large amount of data generated. The identification of these genetic variants opens new perspectives on the implications of genetic background in the arrhythmogenic substrate for research purposes.
As a paradigm for other arrhythmogenic diseases and for unexplained sudden death, our data show that clinical genetic diagnosis is justified in a family perspective for confirmation of genetic causality. In the era of personalized medicine using high-throughput tools, clinical decision-making is increasingly complex.
使用下一代测序技术能够快速分析许多与诸如 Brugada 综合征等心脏性猝死相关的基因。已识别出基因变异与 30% - 35%的 Brugada 综合征病例相关,其中近 20% - 25%归因于 SCN5A 基因变异,这意味着许多病例在基因层面仍未得到诊断。为评估基因变异在致心律失常性疾病中的作用以及下一代测序技术的实用性,我们应用该技术对 28 个与致心律失常性疾病相关的主要基因进行重测序。
使用下一代测序技术对一组 45 例临床诊断为 Brugada 综合征且分类为 SCN5A 阴性的患者进行分析。对 28 个基因进行重测序:AKAP9、ANK2、CACNA1C、CACNB2、CASQ2、CAV3、DSC2、DSG2、DSP、GPD1L、HCN4、JUP、KCNE1、KCNE2、KCNE3、KCNH2、KCNJ2、KCNJ5、KCNQ1、NOS1AP、PKP2、RYR2、SCN1B、SCN3B、SCN4B、SCN5A、SNTA1 和 TMEM43。还对总共 85 名经过临床评估的亲属进行了基因分析以确定家族遗传情况。
22 例患者在 12 个基因中携带 30 种罕见基因变异,其中只有 4 种先前与 Brugada 综合征相关。未检测到插入/缺失或拷贝数变异。我们在可能与 Brugada 综合征相关的新候选基因中识别出基因变异。这些包括:AKAP9 基因中的 4 种基因变异,其中 3 例阳性病例存在新生基因变异;ANK2 基因中的 5 种基因变异在 4 例中被检测到;1 例中 KCNJ2 基因变异与 CASQ2 基因变异同时存在;RYR2 基因中的基因变异,包括 1 种新生基因变异以及在 3 例中检测到的编码桥粒蛋白的基因,如 DSG2、DSP 和 JUP。应考虑使用更大的基因面板或全外显子组测序来识别与 Brugada 综合征相关的新基因。然而,由于产生的数据量巨大,应用诸如全外显子组测序等方法会给临床解释带来困难。这些基因变异的识别为研究基因背景在致心律失常基质中的影响开辟了新的视角。
作为其他致心律失常性疾病和不明原因猝死研究的范例,我们的数据表明,从家族角度进行临床基因诊断对于确认遗传因果关系是合理的。在使用高通量工具的精准医疗时代,临床决策日益复杂。