Kozakov Dima, Hall David R, Napoleon Raeanne L, Yueh Christine, Whitty Adrian, Vajda Sandor
Department of Applied Mathematics & Statistics, Stony Brook University , Stony Brook, New York 11794, United States.
Acpharis Inc. , Holliston, Massachusetts 01746, United States.
J Med Chem. 2015 Dec 10;58(23):9063-88. doi: 10.1021/acs.jmedchem.5b00586. Epub 2015 Aug 11.
A powerful early approach to evaluating the druggability of proteins involved determining the hit rate in NMR-based screening of a library of small compounds. Here, we show that a computational analog of this method, based on mapping proteins using small molecules as probes, can reliably reproduce druggability results from NMR-based screening and can provide a more meaningful assessment in cases where the two approaches disagree. We apply the method to a large set of proteins. The results show that, because the method is based on the biophysics of binding rather than on empirical parametrization, meaningful information can be gained about classes of proteins and classes of compounds beyond those resembling validated targets and conventionally druglike ligands. In particular, the method identifies targets that, while not druggable by druglike compounds, may become druggable using compound classes such as macrocycles or other large molecules beyond the rule-of-five limit.
一种早期的有效方法用于评估蛋白质的可成药性,该方法涉及在基于核磁共振的小分子化合物库筛选中确定命中率。在此,我们表明,这种方法的一种计算类似物,即基于使用小分子作为探针来映射蛋白质的方法,能够可靠地重现基于核磁共振筛选的可成药性结果,并且在两种方法出现分歧的情况下能够提供更有意义的评估。我们将该方法应用于大量蛋白质。结果表明,由于该方法基于结合的生物物理学而非经验参数化,因此可以获得关于蛋白质类别和化合物类别的有意义信息,这些信息超出了那些类似于已验证靶点和传统类药物配体的范围。特别是,该方法识别出的靶点虽然不能被类药物化合物靶向,但使用大环化合物或其他超出五规则限制的大分子等化合物类别可能会成为可靶向的。