Suppr超能文献

相似文献

1
New Frontiers in Druggability.
J Med Chem. 2015 Dec 10;58(23):9063-88. doi: 10.1021/acs.jmedchem.5b00586. Epub 2015 Aug 11.
2
In Silico Target Druggability Assessment: From Structural to Systemic Approaches.
Methods Mol Biol. 2019;1953:63-88. doi: 10.1007/978-1-4939-9145-7_5.
4
NMR in structure-based drug design.
Essays Biochem. 2017 Nov 8;61(5):485-493. doi: 10.1042/EBC20170037.
5
Improving small molecule virtual screening strategies for the next generation of therapeutics.
Curr Opin Chem Biol. 2018 Jun;44:87-92. doi: 10.1016/j.cbpa.2018.06.006. Epub 2018 Jun 17.
6
Cryptic binding sites on proteins: definition, detection, and druggability.
Curr Opin Chem Biol. 2018 Jun;44:1-8. doi: 10.1016/j.cbpa.2018.05.003. Epub 2018 May 23.
7
Drug screening strategy for human membrane proteins: from NMR protein backbone structure to in silica- and NMR-screened hits.
Biochem Biophys Res Commun. 2014 Mar 21;445(4):724-33. doi: 10.1016/j.bbrc.2014.01.179. Epub 2014 Feb 10.
8
NMR-Assisted Molecular Docking Methodologies.
Mol Inform. 2015 Aug;34(8):513-25. doi: 10.1002/minf.201500012. Epub 2015 Jun 19.
9
Computational method to identify druggable binding sites that target protein-protein interactions.
J Chem Inf Model. 2014 May 27;54(5):1391-400. doi: 10.1021/ci400750x. Epub 2014 May 7.
10
In silico structure-based approaches to discover protein-protein interaction-targeting drugs.
Methods. 2017 Dec 1;131:22-32. doi: 10.1016/j.ymeth.2017.08.006. Epub 2017 Aug 9.

引用本文的文献

1
Alphappimi: a comprehensive deep learning framework for predicting PPI-modulator interactions.
J Cheminform. 2025 Aug 29;17(1):134. doi: 10.1186/s13321-025-01077-2.
2
Recent computational advances in the identification of cryptic binding sites for drug discovery.
Bioinform Adv. 2025 Jul 1;5(1):vbaf156. doi: 10.1093/bioadv/vbaf156. eCollection 2025.
3
E-FTMap: A Protein Structure Based Pharmacophore Identification Server for Guiding Fragment Expansion.
J Mol Biol. 2025 Aug 1;437(15):168956. doi: 10.1016/j.jmb.2025.168956. Epub 2025 Jan 17.
5
Which cryptic sites are feasible drug targets?
Drug Discov Today. 2024 Nov;29(11):104197. doi: 10.1016/j.drudis.2024.104197. Epub 2024 Oct 4.
6
Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites.
J Chem Inf Model. 2024 Mar 25;64(6):2084-2100. doi: 10.1021/acs.jcim.3c01969. Epub 2024 Mar 8.
8
Conservation of Hot Spots and Ligand Binding Sites in Protein Models by AlphaFold2.
J Chem Inf Model. 2024 Feb 12;64(3):960-973. doi: 10.1021/acs.jcim.3c01761. Epub 2024 Jan 22.

本文引用的文献

1
Ligand deconstruction: Why some fragment binding positions are conserved and others are not.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2585-94. doi: 10.1073/pnas.1501567112. Epub 2015 Apr 27.
2
The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins.
Nat Protoc. 2015 May;10(5):733-55. doi: 10.1038/nprot.2015.043. Epub 2015 Apr 9.
5
Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity.
ACS Med Chem Lett. 2014 Aug 26;5(10):1088-93. doi: 10.1021/ml5001867. eCollection 2014 Oct 9.
6
Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces.
PLoS Comput Biol. 2014 Oct 2;10(10):e1003872. doi: 10.1371/journal.pcbi.1003872. eCollection 2014 Oct.
7
Discovery of Potent and Simplified Piperidinone-Based Inhibitors of the MDM2-p53 Interaction.
ACS Med Chem Lett. 2014 Jun 30;5(8):894-9. doi: 10.1021/ml500142b. eCollection 2014 Aug 14.
8
Structure-based design of novel human Pin1 inhibitors (III): optimizing affinity beyond the phosphate recognition pocket.
Bioorg Med Chem Lett. 2014 Sep 1;24(17):4187-91. doi: 10.1016/j.bmcl.2014.07.044. Epub 2014 Jul 22.
9
How proteins bind macrocycles.
Nat Chem Biol. 2014 Sep;10(9):723-31. doi: 10.1038/nchembio.1584. Epub 2014 Jul 20.
10
LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 - 2014).
Expert Opin Ther Pat. 2014 Jun;24(6):609-32. doi: 10.1517/13543776.2014.898753. Epub 2014 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验