Liu Dayan, Song Tao, Wang Shuang, Li Xue, Han Peifu, Wang Jianmin, Wang Shudong
College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, Qingdao, 266580, Shandong, China.
J Cheminform. 2025 Aug 29;17(1):134. doi: 10.1186/s13321-025-01077-2.
Protein-protein interactions (PPIs) regulate essential biological processes through complex interfaces, with their dysfunction is associated with various diseases. Consequently, the identification of PPIs and their interface-targeting modulators has emerged as a critical therapeutic approach. However, discovering modulators that target PPIs and PPI interfaces remains challenging as traditional structure-similarity-based methods fail to effectively characterize PPI targets, particularly those for which no active compounds are known. Here, we present AlphaPPIMI, a comprehensive deep learning framework that combines large-scale pretrained language models with domain adaptation for predicting PPI-modulator interactions, specifically targeting PPI interface. To enable robust model development and evaluation, we constructed comprehensive benchmark datasets of PPI-modulator interactions (PPIMI). Our framework integrates comprehensive molecular features from Uni-Mol2, protein representations derived from state-of-the-art language models (ESM2 and ProTrans), and PPI structural characteristics encoded by PFeature. Through a specialized cross-attention architecture and conditional domain adversarial networks (CDAN), AlphaPPIMI effectively learns potential associations between PPI targets and modulators while ensuring robust cross-domain generalization. Extensive evaluations indicate that AlphaPPIMI achieves consistently improved performance over existing methods in PPIMI prediction, offering a promising approach for prioritizing candidate PPI modulators, particularly those targeting protein-protein interfaces. SCIENTIFIC CONTRIBUTION: This work presents AlphaPPIMI, a novel deep learning framework for accurately predicting modulators targeting protein-protein interactions (PPIs) and their interfaces. Its core contributions include a specialized cross-attention module for the synergistic fusion of multimodal pretrained representations, and the novel application of a Conditional Domain Adversarial Network (CDAN) to significantly improve generalization across diverse protein families. AlphaPPIMI demonstrates superior performance on curated benchmarks, providing a powerful computational tool for the discovery of targeted PPI therapeutics.
蛋白质-蛋白质相互作用(PPIs)通过复杂的界面调节基本的生物过程,其功能障碍与多种疾病相关。因此,识别PPIs及其界面靶向调节剂已成为一种关键的治疗方法。然而,发现靶向PPIs及其界面的调节剂仍然具有挑战性,因为传统的基于结构相似性的方法无法有效地表征PPI靶点,特别是那些尚无活性化合物的靶点。在此,我们提出了AlphaPPIMI,这是一个综合的深度学习框架,它将大规模预训练语言模型与域适应相结合,用于预测PPI-调节剂相互作用,特别是针对PPI界面。为了实现强大的模型开发和评估,我们构建了PPI-调节剂相互作用(PPIMI)的综合基准数据集。我们的框架整合了来自Uni-Mol2的综合分子特征、源自最先进语言模型(ESM2和ProTrans)的蛋白质表示以及由PFeature编码的PPI结构特征。通过专门的交叉注意力架构和条件域对抗网络(CDAN),AlphaPPIMI有效地学习PPI靶点与调节剂之间的潜在关联,同时确保强大的跨域泛化能力。广泛的评估表明,AlphaPPIMI在PPIMI预测中比现有方法具有持续改进的性能,为优先选择候选PPI调节剂,特别是那些靶向蛋白质-蛋白质界面的调节剂,提供了一种有前景的方法。科学贡献:这项工作提出了AlphaPPIMI,这是一种用于准确预测靶向蛋白质-蛋白质相互作用(PPIs)及其界面的调节剂的新型深度学习框架。其核心贡献包括一个专门的交叉注意力模块,用于多模态预训练表示的协同融合,以及条件域对抗网络(CDAN)的新应用,以显著提高跨不同蛋白质家族的泛化能力。AlphaPPIMI在精心策划的基准测试中表现出卓越的性能,为发现靶向PPI疗法提供了一个强大的计算工具。