Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany.
Institut für Theoretische Biologie, Humboldt Universität Berlin, Invalidenstrasse 43, 10115 Berlin, Germany.
Phys Rev Lett. 2015 Jul 17;115(3):038101. doi: 10.1103/PhysRevLett.115.038101. Epub 2015 Jul 15.
After colliding with a surface, microswimmers reside there during the detention time. They accumulate and may form complex structures such as biofilms. We introduce a general framework to calculate the distribution of detention times using the method of first-passage times and study how rotational noise and hydrodynamic interactions influence the escape from a surface. We compare generic swimmer models to the simple active Brownian particle. While the respective detention times of source dipoles are smaller, the ones of pullers are larger by up to several orders of magnitude, and pushers show both trends. We apply our results to the more realistic squirmer model, for which we use lubrication theory, and validate them by simulations with multiparticle collision dynamics.
与表面碰撞后,微游泳者在停留时间内停留在那里。它们会聚集并可能形成复杂的结构,如生物膜。我们引入了一种通用框架,使用首次通过时间方法来计算停留时间的分布,并研究旋转噪声和流体动力相互作用如何影响从表面的逃逸。我们将通用的游泳者模型与简单的主动布朗粒子进行了比较。虽然源偶极子的各自停留时间较小,但拉拔器的停留时间大几个数量级,而推动器则显示出这两种趋势。我们将我们的结果应用于更现实的 squirmer 模型,对于该模型,我们使用了润滑理论,并通过多粒子碰撞动力学模拟对其进行了验证。