Suppr超能文献

眼底硬性渗出物转诊系统。

Referral system for hard exudates in eye fundus.

机构信息

International Islamic University, Islamabad, Pakistan.

International Islamic University, Islamabad, Pakistan.

出版信息

Comput Biol Med. 2015 Sep;64:217-35. doi: 10.1016/j.compbiomed.2015.07.003. Epub 2015 Jul 14.

Abstract

Hard exudates are one of the most common anomalies/artifacts found in the eye fundus of patients suffering from diabetic retinopathy. These exudates are the major cause of loss of sight or blindness in people having diabetic retinopathy. Diagnosis of hard exudates requires considerable time and effort of an ophthalmologist. The ophthalmologists have become overloaded, so that there is a need for an automated diagnostic/referral system. In this paper a referral system for the hard exudates in the eye-fundus images has been presented. The proposed referral system works by combining different techniques like Scale Invariant Feature Transform (SIFT), K-means Clustering, Visual Dictionaries and Support Vector Machine (SVM). The system was also tested with Back Propagation Neural Network as a classifier. To test the performance of the system four fundus image databases were used. One publicly available image database was used to compare the performance of the system to the existing systems. To test the general performance of the system when the images are taken under different conditions and come from different sources, three other fundus image databases were mixed. The evaluation of the system was also performed on different sizes of the visual dictionaries. When using only one fundus image database the area under the curve (AUC) of maximum 0.9702 (97.02%) was achieved with accuracy of 95.02%. In case of mixed image databases an AUC of 0.9349 (93.49%) was recorded having accuracy of 87.23%. The results were compared to the existing systems and were found better/comparable.

摘要

硬性渗出物是糖尿病视网膜病变患者眼底最常见的异常/伪影之一。这些渗出物是导致糖尿病视网膜病变患者视力丧失或失明的主要原因。硬性渗出物的诊断需要眼科医生付出相当多的时间和精力。眼科医生已经不堪重负,因此需要一个自动化的诊断/转诊系统。本文提出了一种用于眼底图像中硬性渗出物的转诊系统。该转诊系统通过结合不同的技术,如尺度不变特征变换(SIFT)、K-均值聚类、视觉词典和支持向量机(SVM)来工作。该系统还使用反向传播神经网络作为分类器进行了测试。为了测试系统的性能,使用了四个眼底图像数据库。一个公开的图像数据库用于将系统的性能与现有系统进行比较。为了测试系统在不同条件下拍摄的图像来自不同来源时的一般性能,混合了另外三个眼底图像数据库。还对不同大小的视觉词典进行了系统评估。当仅使用一个眼底图像数据库时,达到了 0.9702(97.02%)的最大曲线下面积(AUC),准确率为 95.02%。在混合图像数据库的情况下,记录到 AUC 为 0.9349(93.49%),准确率为 87.23%。将结果与现有系统进行了比较,发现结果更好/相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验