Suppr超能文献

利用加速鲁棒特征的眼底硬性渗出物转诊系统

Hard exudates referral system in eye fundus utilizing speeded up robust features.

作者信息

Naqvi Syed Ali Gohar, Zafar Hafiz Muhammad Faisal, Haq Ihsanul

机构信息

International Islamic University (IIUI), H-10, Islamabad, Pakistan.

出版信息

Int J Ophthalmol. 2017 Jul 18;10(7):1171-1174. doi: 10.18240/ijo.2017.07.24. eCollection 2017.

Abstract

In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniques. These techniques involve speeded up robust features (SURF), K-means clustering and visual dictionaries (VD). Three databases are mixed to test the working of the system when the sources are dissimilar. When experiments were performed an area under the curve (AUC) of 0.9343 was attained. The results acquired from the system are promising.

摘要

本文提出了一种转诊系统,以协助医学专家对糖尿病性视网膜病变进行筛查/转诊。该系统是通过依次使用不同的现有数学技术开发而成的。这些技术包括加速稳健特征(SURF)、K均值聚类和视觉词典(VD)。混合使用三个数据库来测试该系统在数据源不同时的运行情况。进行实验时,获得了0.9343的曲线下面积(AUC)。从该系统获得的结果很有前景。

相似文献

1
Hard exudates referral system in eye fundus utilizing speeded up robust features.
Int J Ophthalmol. 2017 Jul 18;10(7):1171-1174. doi: 10.18240/ijo.2017.07.24. eCollection 2017.
2
Referral system for hard exudates in eye fundus.
Comput Biol Med. 2015 Sep;64:217-35. doi: 10.1016/j.compbiomed.2015.07.003. Epub 2015 Jul 14.
3
Automated System for Referral of Cotton-Wool Spots.
Curr Diabetes Rev. 2018;14(2):168-174. doi: 10.2174/1573399812666161201114309.
4
5
Neonatal Fundus Image Registration and Mosaic Using Improved Speeded Up Robust Features Based on Shannon Entropy.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3004-3007. doi: 10.1109/EMBC46164.2021.9630593.
7
Points of interest and visual dictionaries for automatic retinal lesion detection.
IEEE Trans Biomed Eng. 2012 Aug;59(8):2244-53. doi: 10.1109/TBME.2012.2201717. Epub 2012 May 30.
8
Tsallis entropy and sparse reconstructive dictionary learning for exudate detection in diabetic retinopathy.
J Med Imaging (Bellingham). 2017 Apr;4(2):024002. doi: 10.1117/1.JMI.4.2.024002. Epub 2017 Apr 19.

引用本文的文献

本文引用的文献

1
Referral system for hard exudates in eye fundus.
Comput Biol Med. 2015 Sep;64:217-35. doi: 10.1016/j.compbiomed.2015.07.003. Epub 2015 Jul 14.
2
Comparison of logistic regression and neural network classifiers in the detection of hard exudates in retinal images.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5891-4. doi: 10.1109/EMBC.2013.6610892.
3
Automatic Exudate Detection from Non-dilated Diabetic Retinopathy Retinal Images Using Fuzzy C-means Clustering.
Sensors (Basel). 2009;9(3):2148-61. doi: 10.3390/s90302148. Epub 2009 Mar 24.
4
A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features.
IEEE Trans Med Imaging. 2011 Jan;30(1):146-58. doi: 10.1109/TMI.2010.2064333. Epub 2010 Aug 9.
5
General retinal vessel segmentation using regularization-based multiconcavity modeling.
IEEE Trans Med Imaging. 2010 Jul;29(7):1369-81. doi: 10.1109/TMI.2010.2043259. Epub 2010 Mar 18.
7
A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images.
Comput Med Imaging Graph. 2010 Apr;34(3):228-35. doi: 10.1016/j.compmedimag.2009.10.001. Epub 2009 Dec 1.
8
Retinal image analysis based on mixture models to detect hard exudates.
Med Image Anal. 2009 Aug;13(4):650-8. doi: 10.1016/j.media.2009.05.005. Epub 2009 May 28.
9
An active contour model for segmenting and measuring retinal vessels.
IEEE Trans Med Imaging. 2009 Sep;28(9):1488-97. doi: 10.1109/TMI.2009.2017941. Epub 2009 Mar 24.
10
Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods.
Comput Med Imaging Graph. 2008 Dec;32(8):720-7. doi: 10.1016/j.compmedimag.2008.08.009. Epub 2008 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验