Suppr超能文献

用于分子从头算密度矩阵重整化群计算的自旋轨道耦合:在g张量中的应用。

Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors.

作者信息

Roemelt Michael

机构信息

Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.

出版信息

J Chem Phys. 2015 Jul 28;143(4):044112. doi: 10.1063/1.4927432.

Abstract

Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.

摘要

自旋轨道耦合(SOC)被引入到分子从头算密度矩阵重整化群(DMRG)计算中。在本文提出的方案中,首先借助DMRG算法来近似求解玻恩 - 奥本海默(BO)哈密顿量的电子基态和一些激发态。由于该算法的自旋适应性,总自旋S对于这些态是一个好的量子数。在非相对论DMRG计算完成后,明确构建计算态的所有磁子能级,并在所得基组中展开SOC算符。为此,通过由SOC算符矩阵和BO哈密顿量矩阵组成的完整哈密顿量矩阵的本征值和本征函数来获得自旋轨道耦合能和波函数。这种处理方法对应于一种准简并微扰理论方法,可被视为分子层面类似于原子的罗素 - 桑德斯耦合。为了评估SOC矩阵元,广泛使用的自旋轨道平均场算符对完整的布莱特 - 泡利SOC哈密顿量进行近似。该算符允许有效利用在非相对论DMRG算法中容易生成的二次量子化三重态替换算符,以及维格纳 - 埃卡特定理。手头有一组自旋轨道耦合波函数后,按照Gerloch和McMeeking提出的方案计算分子g张量。它将有效的分子g值解释为最低克莱默斯对之间的能量差相对于外加磁场强度的斜率。对一个具有化学相关性的钼配合物的测试计算证明了本文方法的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验