Suppr超能文献

呼气羰基化合物作为肺癌的生物标志物。

Breath carbonyl compounds as biomarkers of lung cancer.

机构信息

Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States.

Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40292, United States.

出版信息

Lung Cancer. 2015 Oct;90(1):92-7. doi: 10.1016/j.lungcan.2015.07.005. Epub 2015 Jul 19.

Abstract

OBJECTIVE

Lung cancer dysregulations impart oxidative stress which results in important metabolic products in the form of volatile organic compounds (VOCs) in exhaled breath. The objective of this work is to use statistical classification models to determine specific carbonyl VOCs in exhaled breath as biomarkers for detection of lung cancer.

MATERIALS AND METHODS

Exhaled breath samples from 85 patients with untreated lung cancer, 34 patients with benign pulmonary nodules and 85 healthy controls were collected. Carbonyl compounds in exhaled breath were captured by silicon microreactors and analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The concentrations of carbonyl compounds were analyzed using a variety of statistical classification models to determine which compounds best differentiated between the patient sub-populations. Predictive accuracy of each of the models was assessed on a separate test data set.

RESULTS

Six carbonyl compounds (C(4)H(8)O, C(5)H(10)O, C(2)H(4)O(2), C(4)H(8)O(2), C(6)H(10)O(2), C(9)H(16)O(2)) had significantly elevated concentrations in lung cancer patients vs.

CONTROLS

A model based on counting the number of elevated compounds out of these six achieved an overall classification accuracy on the test data of 97% (95% CI 92%-100%), 95% (95% CI 88%-100%), and 89% (95% CI 79%-99%) for classifying lung cancer patients vs. non-smokers, current smokers, and patients with benign nodules, respectively. These results were comparable to benchmarking based on established statistical and machine-learning methods. The sensitivity in each case was 96% or higher, with specificity ranging from 64% for benign nodule patients to 86% for smokers and 100% for non-smokers.

CONCLUSION

A model based on elevated levels of the six carbonyl VOCs effectively discriminates lung cancer patients from healthy controls as well as patients with benign pulmonary nodules.

摘要

目的

肺癌失调导致氧化应激,从而在呼出的呼吸中形成重要的代谢产物挥发性有机化合物(VOC)。本研究的目的是使用统计分类模型来确定呼出呼吸中的特定羰基 VOC 作为肺癌检测的生物标志物。

材料与方法

收集了 85 例未经治疗的肺癌患者、34 例良性肺结节患者和 85 例健康对照者的呼气样本。用硅微反应器采集呼气中的羰基化合物,并用傅里叶变换离子回旋共振质谱(FT-ICR-MS)进行分析。用多种统计分类模型分析羰基化合物的浓度,以确定哪些化合物最能区分患者亚群。在单独的测试数据集上评估每个模型的预测准确性。

结果

与对照组相比,有 6 种羰基化合物(C(4)H(8)O、C(5)H(10)O、C(2)H(4)O(2)、C(4)H(8)O(2)、C(6)H(10)O(2)、C(9)H(16)O(2))在肺癌患者中的浓度显著升高。

基于这 6 种羰基化合物升高的数量的模型在测试数据上的总体分类准确率为 97%(95%置信区间 92%-100%)、95%(95%置信区间 88%-100%)和 89%(95%置信区间 79%-99%),分别用于区分肺癌患者与不吸烟者、当前吸烟者和良性结节患者。这些结果与基于既定统计和机器学习方法的基准测试相当。在每种情况下,灵敏度均为 96%或更高,特异性范围为良性结节患者 64%至吸烟者 86%和不吸烟者 100%。

结论

基于这 6 种羰基 VOC 水平升高的模型可有效区分肺癌患者与健康对照者以及良性肺结节患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验