Suppr超能文献

一种用于选择潜在肺癌生物标志物的人工神经网络模型的应用。

Application of an artificial neural network model for selection of potential lung cancer biomarkers.

作者信息

Ligor Tomasz, Pater Łukasz, Buszewski Bogusław

机构信息

Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87-100 Toruń, Poland.

出版信息

J Breath Res. 2015 May 6;9(2):027106. doi: 10.1088/1752-7155/9/2/027106.

Abstract

Determination of volatile organic compounds (VOCs) in the exhaled breath samples of lung cancer patients and healthy controls was carried out by SPME-GC/MS (solid phase microextraction- gas chromatography combined with mass spectrometry) analyses. In order to compensate for the volatile exogenous contaminants, ambient air blank samples were also collected and analyzed. We recruited a total of 123 patients with biopsy-confirmed lung cancer and 361 healthy controls to find the potential lung cancer biomarkers. Automatic peak deconvolution and identification were performed using chromatographic data processing software (AMDIS with NIST database). All of the VOCs sample data operation, storage and management were performed using the SQL (structured query language) relational database. The selected eight VOCs could be possible biomarker candidates. In cross-validation on test data sensitivity was 63.5% and specificity 72.4% AUC 0.65. The low performance of the model has been mainly due to overfitting and the exogenous VOCs that exist in breath. The dedicated software implementing a multilayer neural network using a genetic algorithm for training was built. Further work is needed to confirm the performance of the created experimental model.

摘要

通过固相微萃取-气相色谱联用质谱(SPME-GC/MS)分析,对肺癌患者和健康对照者的呼出气体样本中的挥发性有机化合物(VOCs)进行了测定。为了补偿挥发性外源性污染物,还收集并分析了环境空气空白样本。我们共招募了123例经活检确诊的肺癌患者和361例健康对照者,以寻找潜在的肺癌生物标志物。使用色谱数据处理软件(带有NIST数据库的AMDIS)进行自动峰去卷积和鉴定。所有VOCs样本数据的操作、存储和管理均使用SQL(结构化查询语言)关系数据库进行。所选的8种VOCs可能是潜在的生物标志物候选物。在测试数据的交叉验证中,灵敏度为63.5%,特异性为72.4%,曲线下面积(AUC)为0.65。该模型的低性能主要归因于过拟合以及呼出气体中存在的外源性VOCs。构建了使用遗传算法进行训练的多层神经网络的专用软件。需要进一步开展工作以确认所创建实验模型的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验