Suppr超能文献

用于蛋白质设计的构象和序列的快速无间隙枚举

Fast gap-free enumeration of conformations and sequences for protein design.

作者信息

Roberts Kyle E, Gainza Pablo, Hallen Mark A, Donald Bruce R

机构信息

Department of Computer Science, Duke University, Durham, NC.

Department of Biochemistry, Duke University Medical Center, Durham, NC.

出版信息

Proteins. 2015 Oct;83(10):1859-1877. doi: 10.1002/prot.24870. Epub 2015 Aug 24.

Abstract

Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs.

摘要

尽管近年来基于结构的计算蛋白质设计取得了显著成功,但蛋白质设计算法仍需改进,以提高新设计的生物学准确性。蛋白质设计算法会在指数数量的蛋白质构象、蛋白质集合和氨基酸序列中进行搜索,试图找到具有所需生物学功能的全局最优结构。为了提高蛋白质设计的生物学准确性,有必要在搜索过程中增加允许的蛋白质灵活性数量以及设计的整体规模,同时确保找到能量最低的结构和序列。基于DEE/A的算法是蛋白质设计领域中最普遍的可证明算法,并且可以可证明地枚举低能量蛋白质构象的无间隙列表,这对于预测蛋白质结合的基于集合的算法来说是必要的。我们提出了两类对A算法的算法改进,极大地提高了A的效率。首先,我们分析了在A树中对可变残基位置扩展进行排序的影响,并提出了一种动态残基排序方法,该方法减少了搜索过程中必须访问的A节点数量。其次,我们提出了新的方法来改进用于在A搜索期间估计部分构象能量的构象边界。残基排序技术和改进的边界可以结合起来进一步提高A的效率。我们的改进使所有基于A的方法能够更全面地搜索蛋白质构象空间,这最终将提高复杂的生物医学相关设计的准确性。

相似文献

1
Fast gap-free enumeration of conformations and sequences for protein design.
Proteins. 2015 Oct;83(10):1859-1877. doi: 10.1002/prot.24870. Epub 2015 Aug 24.
2
Improved energy bound accuracy enhances the efficiency of continuous protein design.
Proteins. 2015 Jun;83(6):1151-64. doi: 10.1002/prot.24808. Epub 2015 May 8.
8
A critical analysis of computational protein design with sparse residue interaction graphs.
PLoS Comput Biol. 2017 Mar 30;13(3):e1005346. doi: 10.1371/journal.pcbi.1005346. eCollection 2017 Mar.
9
Protein design for diversity of sequences and conformations using dead-end elimination.
Methods Mol Biol. 2012;899:127-44. doi: 10.1007/978-1-61779-921-1_8.
10
Dead-end elimination with backbone flexibility.
Bioinformatics. 2007 Jul 1;23(13):i185-94. doi: 10.1093/bioinformatics/btm197.

引用本文的文献

3
iCFN: an efficient exact algorithm for multistate protein design.
Bioinformatics. 2018 Sep 1;34(17):i811-i820. doi: 10.1093/bioinformatics/bty564.
4
OSPREY 3.0: Open-source protein redesign for you, with powerful new features.
J Comput Chem. 2018 Nov 15;39(30):2494-2507. doi: 10.1002/jcc.25522. Epub 2018 Oct 14.
7
A critical analysis of computational protein design with sparse residue interaction graphs.
PLoS Comput Biol. 2017 Mar 30;13(3):e1005346. doi: 10.1371/journal.pcbi.1005346. eCollection 2017 Mar.
9
cOSPREY: A Cloud-Based Distributed Algorithm for Large-Scale Computational Protein Design.
J Comput Biol. 2016 Sep;23(9):737-49. doi: 10.1089/cmb.2015.0234. Epub 2016 May 6.
10
Algorithms for protein design.
Curr Opin Struct Biol. 2016 Aug;39:16-26. doi: 10.1016/j.sbi.2016.03.006. Epub 2016 Apr 14.

本文引用的文献

2
Protein design algorithms predict viable resistance to an experimental antifolate.
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):749-54. doi: 10.1073/pnas.1411548112. Epub 2014 Dec 31.
3
De novo design of a transmembrane Zn²⁺-transporting four-helix bundle.
Science. 2014 Dec 19;346(6216):1520-4. doi: 10.1126/science.1261172.
6
Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration.
J Chem Theory Comput. 2013 Nov 12;9(11):5098-5115. doi: 10.1021/ct400383v. Epub 2013 Aug 7.
7
A new framework for computational protein design through cost function network optimization.
Bioinformatics. 2013 Sep 1;29(17):2129-36. doi: 10.1093/bioinformatics/btt374. Epub 2013 Jul 10.
8
OSPREY: protein design with ensembles, flexibility, and provable algorithms.
Methods Enzymol. 2013;523:87-107. doi: 10.1016/B978-0-12-394292-0.00005-9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验