Suppr超能文献

结合自组织映射和监督式亲和传播聚类方法,利用功能磁共振成像测量来研究参与运动想象和执行的功能性脑网络。

Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

作者信息

Zhang Jiang, Liu Qi, Chen Huafu, Yuan Zhen, Huang Jin, Deng Lihua, Lu Fengmei, Zhang Junpeng, Wang Yuqing, Wang Mingwen, Chen Liangyin

机构信息

Department of Medical Information Engineering, School of Electrical Engineering and Information, Sichuan University Chengdu, China.

School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China.

出版信息

Front Hum Neurosci. 2015 Jul 17;9:400. doi: 10.3389/fnhum.2015.00400. eCollection 2015.

Abstract

Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.

摘要

聚类分析方法已被广泛应用于识别多任务范式下的功能性脑网络。然而,先前使用的聚类分析技术计算成本高昂,因此在临床应用中不切实际。在本研究中,提出并实现了一种名为SOM-SAPC的新方法,该方法结合了自组织映射(SOM)和监督亲和传播聚类(SAPC),以识别运动执行(ME)和运动想象(MI)网络。在SOM-SAPC中,首先进行SOM以处理功能磁共振成像(fMRI)数据,然后进一步利用SAPC对功能网络模式进行聚类。结果,SOM-SAPC能够显著降低脑网络分析的计算成本。基于SOM-SAPC进行了涉及ME和MI的模拟和临床试验,分析结果表明,功能性脑网络通过不同的反应模式被清晰识别,且计算成本降低。特别是,清晰地揭示了三个激活簇,其中包括视觉、ME和MI功能网络的部分区域。这些发现证实了SOM-SAPC是一种分析多任务fMRI数据的有效且稳健的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dda/4505109/5fcfc08936b8/fnhum-09-00400-g0001.jpg

相似文献

3
Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
IEEE Trans Biomed Eng. 2011 Nov;58(11):3184-96. doi: 10.1109/TBME.2011.2165542. Epub 2011 Aug 22.
4
Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering.
IEEE Trans Med Imaging. 2008 Oct;27(10):1472-83. doi: 10.1109/TMI.2008.923987.
5
Resting-state functional connectivity and motor imagery brain activation.
Hum Brain Mapp. 2016 Nov;37(11):3847-3857. doi: 10.1002/hbm.23280.
7
Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.
Neuroimage Clin. 2015 Jun 28;8:572-82. doi: 10.1016/j.nicl.2015.06.006. eCollection 2015.
9
SOM and MCODE methods of defining functional clusters in MRI of the brain.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:734-7. doi: 10.1109/EMBC.2014.6943695.
10

引用本文的文献

本文引用的文献

1
Handedness and effective connectivity of the motor system.
Neuroimage. 2014 Oct 1;99:451-60. doi: 10.1016/j.neuroimage.2014.05.048. Epub 2014 May 23.
2
A novel approach for fMRI data analysis based on the combination of sparse approximation and affinity propagation clustering.
Magn Reson Imaging. 2014 Jul;32(6):736-46. doi: 10.1016/j.mri.2014.02.023. Epub 2014 Mar 14.
3
Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
Neuroimage. 2014 Aug 1;96:54-66. doi: 10.1016/j.neuroimage.2014.02.006. Epub 2014 Feb 12.
4
Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains.
Front Hum Neurosci. 2013 Oct 16;7:676. doi: 10.3389/fnhum.2013.00676. eCollection 2013.
5
Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
IEEE Trans Biomed Eng. 2011 Nov;58(11):3184-96. doi: 10.1109/TBME.2011.2165542. Epub 2011 Aug 22.
6
Motor cortex and hand motor skills: structural compliance in the human brain.
Hum Brain Mapp. 1997;5(3):206-15. doi: 10.1002/(SICI)1097-0193(1997)5:3<206::AID-HBM5>3.0.CO;2-7.
8
Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping.
Neuroimage. 2009 Oct 1;47(4):1844-53. doi: 10.1016/j.neuroimage.2009.06.026. Epub 2009 Jun 18.
9
Cluster analysis of resting-state fMRI time series.
Neuroimage. 2009 May 1;45(4):1117-25. doi: 10.1016/j.neuroimage.2008.12.015. Epub 2008 Dec 25.
10
Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering.
IEEE Trans Med Imaging. 2008 Oct;27(10):1472-83. doi: 10.1109/TMI.2008.923987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验