Suppr超能文献

使用集成主成分分析和监督亲和传播聚类方法分析 fMRI 数据。

Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.

机构信息

Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

IEEE Trans Biomed Eng. 2011 Nov;58(11):3184-96. doi: 10.1109/TBME.2011.2165542. Epub 2011 Aug 22.

Abstract

Clustering analysis is a promising data-driven method for analyzing functional magnetic resonance imaging (fMRI) time series data. The huge computational load, however, creates practical difficulties for this technique. We present a novel approach, integrating principal component analysis (PCA) and supervised affinity propagation clustering (SAPC). In this method, fMRI data are initially processed by PCA to obtain a preliminary image of brain activation. SAPC is then used to detect different brain functional activation patterns. We used a supervised Silhouette index to optimize clustering quality and automatically search for the optimal parameter p in SAPC, so that the basic affinity propagation clustering is improved by applying SAPC. Four simulation studies and tests with three in vivo fMRI datasets containing data from both block-design and event-related experiments revealed that functional brain activation was effectively detected and different response patterns were distinguished using our integrated method. In addition, the improved SAPC method was superior to the k -centers clustering and hierarchical clustering methods in both block-design and event-related fMRI data, as measured by the average squared error. These results suggest that our proposed novel integrated approach will be useful for detecting brain functional activation in both block-design and event-related experimental fMRI data.

摘要

聚类分析是一种很有前途的数据分析方法,可用于分析功能磁共振成像 (fMRI) 时间序列数据。然而,其巨大的计算量给该技术带来了实际困难。我们提出了一种新的方法,将主成分分析 (PCA) 和有监督亲和传播聚类 (SAPC) 相结合。在该方法中,首先对 fMRI 数据进行 PCA 处理,以获得大脑激活的初步图像。然后,使用 SAPC 检测不同的大脑功能激活模式。我们使用有监督的 Silhouette 指数来优化聚类质量,并自动搜索 SAPC 中的最优参数 p,从而通过应用 SAPC 改进基本亲和传播聚类。通过四项模拟研究和三个包含来自块设计和事件相关实验数据的体内 fMRI 数据集的测试,发现我们的集成方法可以有效地检测到功能脑激活,并区分不同的反应模式。此外,改进后的 SAPC 方法在块设计和事件相关 fMRI 数据中的平均平方误差方面优于 k-中心点聚类和层次聚类方法。这些结果表明,我们提出的新的集成方法将有助于检测块设计和事件相关实验 fMRI 数据中的大脑功能激活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验