Department of Geosciences and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
Graduate School of Oceanography, University of Rhode Island, South Kingstown, RI, USA.
Trends Microbiol. 2024 Jun;32(6):546-553. doi: 10.1016/j.tim.2023.12.007. Epub 2024 Jan 22.
Biological N fixation sustains the global inventory of nitrogenous nutrients essential for the productivity of terrestrial and marine ecosystems. Like most metabolic processes, rates of biological N fixation vary strongly with temperature, making it sensitive to climate change, but a global projection across land and ocean is lacking. Here we use compilations of field and laboratory measurements to reveal a relationship between N fixation rates and temperature that is similar in both domains despite large taxonomic and environmental differences. Rates of N fixation increase gradually to a thermal optimum around ~25°C, and decline more rapidly toward a thermal maximum, which is lower in the ocean than on land. In both realms, the observed temperature sensitivities imply that climate warming this century could decrease N fixation rates by ~50% in the tropics while increasing rates by ~50% in higher latitudes. We propose a conceptual framework for understanding the physiological and ecological mechanisms that underpin and modulate the observed temperature dependence of global N fixation rates, facilitating cross-fertilization of marine and terrestrial research to assess its response to climate change.
生物固氮维持着全球氮营养物质的库存,这些物质是陆地和海洋生态系统生产力所必需的。与大多数代谢过程一样,生物固氮的速率强烈地随温度变化,使其对气候变化敏感,但缺乏陆地和海洋的全球预测。在这里,我们利用野外和实验室测量的汇编数据,揭示了氮固定速率与温度之间的关系,尽管在分类学和环境方面存在很大差异,但在这两个领域都很相似。氮固定的速率逐渐增加到约 25°C 的热最佳温度,然后向热最大值迅速下降,海洋中的热最大值低于陆地。在这两个领域,观察到的温度敏感性意味着本世纪的气候变暖可能会使热带地区的氮固定速率降低约 50%,而高纬度地区的氮固定速率则增加约 50%。我们提出了一个概念框架,用于理解支撑和调节全球氮固定速率观测到的温度依赖性的生理和生态机制,促进海洋和陆地研究的交叉授粉,以评估其对气候变化的反应。