Delatte Benjamin, Jeschke Jana, Defrance Matthieu, Bachman Martin, Creppe Catherine, Calonne Emilie, Bizet Martin, Deplus Rachel, Marroquí Laura, Libin Myriam, Ravichandran Mirunalini, Mascart Françoise, Eizirik Decio L, Murrell Adele, Jurkowski Tomasz P, Fuks François
Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB, 1070 Brussels, Belgium.
CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom.
Sci Rep. 2015 Aug 4;5:12714. doi: 10.1038/srep12714.
The TET enzymes convert methylcytosine to the newly discovered base hydroxymethylcytosine. While recent reports suggest that TETs may play a role in response to oxidative stress, this role remains uncertain, and results lack in vivo models. Here we show a global decrease of hydroxymethylcytosine in cells treated with buthionine sulfoximine, and in mice depleted for the major antioxidant enzymes GPx1 and 2. Furthermore, genome-wide profiling revealed differentially hydroxymethylated regions in coding genes, and intriguingly in microRNA genes, both involved in response to oxidative stress. These results thus suggest a profound effect of in vivo oxidative stress on the global hydroxymethylome.
TET 酶将甲基胞嘧啶转化为新发现的碱基羟甲基胞嘧啶。虽然最近的报道表明 TET 酶可能在应对氧化应激中发挥作用,但这一作用仍不确定,且缺乏体内模型的研究结果。在此我们发现,在用丁硫氨酸亚砜胺处理的细胞以及缺乏主要抗氧化酶 GPx1 和 GPx2 的小鼠中,羟甲基胞嘧啶整体水平下降。此外,全基因组分析揭示了编码基因以及有趣的是参与氧化应激反应的 microRNA 基因中存在差异羟甲基化区域。因此,这些结果表明体内氧化应激对整体羟甲基化组有深远影响。