Dou Zhen, Liu Xing, Wang Wenwen, Zhu Tongge, Wang Xinghui, Xu Leilei, Abrieu Ariane, Fu Chuanhai, Hill Donald L, Yao Xuebiao
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230026, China;
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230026, China; Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310;
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):E4546-55. doi: 10.1073/pnas.1508791112. Epub 2015 Aug 3.
The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C-MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression.
纺锤体组装检查点(SAC)是一条保守的信号通路,可监测有丝分裂期间染色体的忠实分离。作为SAC的核心组成部分,进化上保守的激酶单极纺锤体1(Mps1)参与调节染色体排列,但其潜在的分子机制仍不清楚。我们对SAC中Mps1活性的分子描述导致发现了动粒上Mps1功能的一个以前未被识别的结构决定因素。在这里,我们表明Mps1包含一个与四肽重复结构域相邻的动粒定位内部区域(IRK)。重要的是,IRK区域决定了无活性Mps1的动粒定位,无活性Mps1的积累会干扰精确的染色体排列和有丝分裂进程。从机制上讲,IRK区域与核分裂周期80复合体(Ndc80C)结合,无活性Mps1在动粒处的积累会阻止Ndc80C与纺锤体微管(MTs)之间的动态相互作用,从而导致异常的动粒附着。因此,我们的结果提出了一种以前未定义的机制,通过该机制Mps1通过协调Ndc80C-MT相互作用在染色体排列中发挥作用,并强调了精确的时空调节Mps1激酶活性和动粒定位在精确有丝分裂进程中的重要性。