Suppr超能文献

用于解释牙齿磨损的新模型及其对微磨损形成和饮食重建的意义。

New model to explain tooth wear with implications for microwear formation and diet reconstruction.

作者信息

Xia Jing, Zheng Jing, Huang Diaodiao, Tian Z Ryan, Chen Lei, Zhou Zhongrong, Ungar Peter S, Qian Linmao

机构信息

Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, People's Republic of China;

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701; Institute of Nanoscale Science and Engineering, University of Arkansas, Fayetteville, AR 72701;

出版信息

Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10669-72. doi: 10.1073/pnas.1509491112. Epub 2015 Aug 3.

Abstract

Paleoanthropologists and vertebrate paleontologists have for decades debated the etiology of tooth wear and its implications for understanding the diets of human ancestors and other extinct mammals. The debate has recently taken a twist, calling into question the efficacy of dental microwear to reveal diet. Some argue that endogenous abrasives in plants (opal phytoliths) are too soft to abrade enamel, and that tooth wear is caused principally by exogenous quartz grit on food. If so, variation in microwear among fossil species may relate more to habitat than diet. This has important implications for paleobiologists because microwear is a common proxy for diets of fossil species. Here we reexamine the notion that particles softer than enamel (e.g., silica phytoliths) do not wear teeth. We scored human enamel using a microfabrication instrument fitted with soft particles (aluminum and brass spheres) and an atomic force microscope (AFM) fitted with silica particles under fixed normal loads, sliding speeds, and spans. Resulting damage was measured by AFM, and morphology and composition of debris were determined by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Enamel chips removed from the surface demonstrate that softer particles produce wear under conditions mimicking chewing. Previous models posited that such particles rub enamel and create ridges alongside indentations without tissue removal. We propose that although these models hold for deformable metal surfaces, enamel works differently. Hydroxyapatite crystallites are "glued" together by proteins, and tissue removal requires only that contact pressure be sufficient to break the bonds holding enamel together.

摘要

几十年来,古人类学家和脊椎动物古生物学家一直在争论牙齿磨损的病因及其对理解人类祖先和其他已灭绝哺乳动物饮食的意义。最近,这场争论出现了转折,有人质疑牙齿微磨损揭示饮食的有效性。一些人认为,植物中的内源性磨蚀剂(蛋白石植硅体)太软,无法磨损牙釉质,牙齿磨损主要是由食物上的外源性石英砂粒造成的。如果是这样,化石物种之间微磨损的差异可能更多地与栖息地有关,而不是与饮食有关。这对古生物学家具有重要意义,因为微磨损是化石物种饮食的常见替代指标。在这里,我们重新审视了比牙釉质软的颗粒(如二氧化硅植硅体)不会磨损牙齿的观点。我们使用配备软颗粒(铝球和黄铜球)的微加工仪器以及在固定法向载荷、滑动速度和跨度下配备二氧化硅颗粒的原子力显微镜对人类牙釉质进行评分。通过原子力显微镜测量产生的损伤,并通过带有能量色散X射线光谱的扫描电子显微镜确定碎片的形态和成分。从表面去除的牙釉质碎片表明,在模拟咀嚼的条件下,较软的颗粒会产生磨损。以前的模型假定,这些颗粒会摩擦牙釉质,并在凹痕旁形成脊,而不会去除组织。我们认为,尽管这些模型适用于可变形的金属表面,但牙釉质的工作方式不同。羟基磷灰石微晶通过蛋白质“胶合”在一起,去除组织只需要接触压力足以打破将牙釉质结合在一起的键即可。

相似文献

1
New model to explain tooth wear with implications for microwear formation and diet reconstruction.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10669-72. doi: 10.1073/pnas.1509491112. Epub 2015 Aug 3.
4
The role of food stiffness in dental microwear feature formation.
Arch Oral Biol. 2016 Nov;71:16-23. doi: 10.1016/j.archoralbio.2016.06.018. Epub 2016 Jun 16.
5
A review of dental microwear and diet in modern mammals.
Scanning Microsc. 1988 Jun;2(2):1149-66.
6
Mechanisms and causes of wear in tooth enamel: implications for hominin diets.
J R Soc Interface. 2013 Jan 9;10(80):20120923. doi: 10.1098/rsif.2012.0923. Print 2013 Mar 6.
7
In vivo and in vitro turnover in dental microwear.
Am J Phys Anthropol. 1989 Dec;80(4):447-60. doi: 10.1002/ajpa.1330800405.
8
Shape, size, and quantity of ingested external abrasives influence dental microwear texture formation in guinea pigs.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22264-22273. doi: 10.1073/pnas.2008149117. Epub 2020 Aug 24.
9
Mecrowear of mammalian teeth as an indicator of diet.
Science. 1978 Sep 8;201(4359):908-10. doi: 10.1126/science.684415.
10
Dental microwear and microstructure in early oligocene primates from the Fayum, Egypt: implications for diet.
Am J Phys Anthropol. 1996 Dec;101(4):527-43. doi: 10.1002/(SICI)1096-8644(199612)101:4<527::AID-AJPA7>3.0.CO;2-S.

引用本文的文献

1
Novel experimental methods to investigate the effects of plant phytoliths on tooth enamel wear.
J R Soc Interface. 2025 Jul;22(228):20250175. doi: 10.1098/rsif.2025.0175. Epub 2025 Jul 2.
2
Long-term occlusal tooth wear at the onset of permanent dentition.
Clin Oral Investig. 2024 Feb 16;28(2):155. doi: 10.1007/s00784-024-05550-4.
3
Enamel Structure Defects in Missense Mutation Knock-in Mice.
Biomedicines. 2023 Feb 7;11(2):482. doi: 10.3390/biomedicines11020482.
4
Experimental approaches to assess the effect of composition of abrasives in the cause of dental microwear.
R Soc Open Sci. 2022 Jun 8;9(6):211549. doi: 10.1098/rsos.211549. eCollection 2022 Jun.
5
Mechanical compensation in the evolution of the early hominin feeding apparatus.
Proc Biol Sci. 2022 Jun 8;289(1976):20220711. doi: 10.1098/rspb.2022.0711. Epub 2022 Jun 15.
6
Molar biomechanical function in South African hominins and .
Interface Focus. 2021 Aug 13;11(5):20200085. doi: 10.1098/rsfs.2020.0085. eCollection 2021 Oct 6.
7
Anthroengineering: an independent interdisciplinary field.
Interface Focus. 2021 Aug 13;11(5):20200056. doi: 10.1098/rsfs.2020.0056. eCollection 2021 Oct 6.
8
Phytoliths can cause tooth wear.
J R Soc Interface. 2020 Nov;17(172):20200613. doi: 10.1098/rsif.2020.0613. Epub 2020 Nov 4.
9
Shape, size, and quantity of ingested external abrasives influence dental microwear texture formation in guinea pigs.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22264-22273. doi: 10.1073/pnas.2008149117. Epub 2020 Aug 24.
10
The history of mesowear: a review.
PeerJ. 2020 Feb 13;8:e8519. doi: 10.7717/peerj.8519. eCollection 2020.

本文引用的文献

1
Scratching the surface: a critique of Lucas et al. (2013)'s conclusion that phytoliths do not abrade enamel.
J Hum Evol. 2014 Sep;74:130-133. doi: 10.1016/j.jhevol.2014.02.001. Epub 2014 Mar 7.
2
Viewpoints: diet and dietary adaptations in early hominins: the hard food perspective.
Am J Phys Anthropol. 2013 Jul;151(3):339-55. doi: 10.1002/ajpa.22285.
3
Mechanisms and causes of wear in tooth enamel: implications for hominin diets.
J R Soc Interface. 2013 Jan 9;10(80):20120923. doi: 10.1098/rsif.2012.0923. Print 2013 Mar 6.
5
Ecogeographic variation in Neandertal dietary habits: evidence from occlusal molar microwear texture analysis.
J Hum Evol. 2011 Oct;61(4):411-24. doi: 10.1016/j.jhevol.2011.05.004. Epub 2011 Jun 29.
6
Do grasses fight back? The case for antiherbivore defences.
Trends Ecol Evol. 1993 Apr;8(4):137-41. doi: 10.1016/0169-5347(93)90026-L.
7
Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics.
J Mech Behav Biomed Mater. 2008 Jan;1(1):18-29. doi: 10.1016/j.jmbbm.2007.05.001. Epub 2007 May 24.
8
In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study.
Dent Mater. 2009 Jul;25(7):884-91. doi: 10.1016/j.dental.2009.01.094. Epub 2009 Feb 11.
9
Herbivore specific induction of silica-based plant defences.
Oecologia. 2007 Jul;152(4):677-83. doi: 10.1007/s00442-007-0703-5. Epub 2007 Mar 21.
10
Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder.
J Anim Ecol. 2006 Mar;75(2):595-603. doi: 10.1111/j.1365-2656.2006.01082.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验