Ferrari-Toniolo Simone, Visco-Comandini Federica, Papazachariadis Odysseas, Caminiti Roberto, Battaglia-Mayer Alexandra
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy.
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
J Neurosci. 2015 Aug 5;35(31):10899-910. doi: 10.1523/JNEUROSCI.4696-14.2015.
Major achievements of primate evolution are skilled hand-object interaction and tool use, both in part dependent on parietal cortex expansion. We recorded spiking activity from macaque inferior parietal cortex during directional manipulation of an isometric tool, which required the application of hand forces to control a cursor's motion on a screen. In areas PFG/PF, the activity of ∼ 70% neurons was modulated by the hand force necessary to implement the desired target motion, reflecting an inverse model, rather than by the intended motion of the visual cursor (forward model). The population vector matched the direction and amplitude of the instantaneous force increments over time. When exposed to a new force condition, that obliged the monkey to change the force output to successfully bring the cursor to the final target, the activity of a consistent subpopulation of neurons changed in an orderly fashion and, at the end of a "Wash-out" session, retained memory of the new learned association, at the service of predictive control of force. Our findings suggest that areas PFG/PF represent a crucial node of the distributed control of hand force, by encoding instantaneous force variations and serving as a memory reservoir of hand dynamics required for object manipulation and tool use. This is coherent with previous studies in humans showing the following: (1) impaired adaptation to a new force field under TMS parietal perturbation; (2) defective control of direction of hand force after parietal lesion; and (3) fMRI activation of parietal cortex during object manipulation requiring control of fine hand forces.
Skilled object manipulation and tool use are major achievements of primate evolution, both largely dependent on posterior parietal cortex (PPC) expansion. Neurophysiological and fMRI studies in macaque and humans had documented a crucial role of PPC in encoding the hand kinematics underlying these functions, leaving to premotor and motor areas the role of specifying the underlying hand forces. We recorded spiking activity from macaque PPC during manipulation of an isometric tool and found that population activity is not only modulated by the dynamic hand force and its change over time, but also retains memory of the exerted force, as a reservoir to guide of future hand action. This suggests parallel parietal encoding of hand dynamics and kinematics during object manipulation.
灵长类动物进化的主要成就包括熟练的手部与物体交互及工具使用,这两者部分依赖于顶叶皮层的扩展。我们在等距工具的定向操作过程中记录了猕猴下顶叶皮层的尖峰活动,该操作需要施加手部力量来控制屏幕上光标的运动。在PFG/PF区域,约70%的神经元活动受到实现期望目标运动所需手部力量的调制,反映出一种逆模型,而非视觉光标(前向模型)的预期运动。总体向量与随时间变化的瞬时力增量的方向和幅度相匹配。当暴露于新的力条件下,这迫使猴子改变力输出以成功将光标移至最终目标时,一组一致的神经元亚群的活动会有序变化,并且在“洗脱”阶段结束时,保留对新学习关联的记忆,以用于力的预测控制。我们的研究结果表明,PFG/PF区域通过编码瞬时力变化并作为物体操作和工具使用所需手部动力学的记忆库,代表了手部力量分布式控制的关键节点。这与先前在人类中的研究结果一致,这些研究表明:(1)在经颅磁刺激顶叶扰动下对新力场的适应受损;(2)顶叶损伤后手力方向控制缺陷;(3)在需要精细手部力量控制的物体操作过程中顶叶皮层的功能磁共振成像激活。
熟练的物体操作和工具使用是灵长类动物进化的主要成就,两者在很大程度上依赖于后顶叶皮层(PPC)的扩展。对猕猴和人类的神经生理学和功能磁共振成像研究记录了PPC在编码这些功能背后的手部运动学方面的关键作用,而将指定潜在手部力量的作用留给了运动前区和运动区。我们在等距工具操作过程中记录了猕猴PPC的尖峰活动,发现总体活动不仅受到动态手部力量及其随时间变化的调制,还保留了施加力的记忆,作为指导未来手部动作的储备。这表明在物体操作过程中手部动力学和运动学存在并行的顶叶编码。