Suppr超能文献

后顶叶皮层对手与物体交互过程中动态手部力量的编码。

Posterior Parietal Cortex Encoding of Dynamic Hand Force Underlying Hand-Object Interaction.

作者信息

Ferrari-Toniolo Simone, Visco-Comandini Federica, Papazachariadis Odysseas, Caminiti Roberto, Battaglia-Mayer Alexandra

机构信息

Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy.

Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy

出版信息

J Neurosci. 2015 Aug 5;35(31):10899-910. doi: 10.1523/JNEUROSCI.4696-14.2015.

Abstract

UNLABELLED

Major achievements of primate evolution are skilled hand-object interaction and tool use, both in part dependent on parietal cortex expansion. We recorded spiking activity from macaque inferior parietal cortex during directional manipulation of an isometric tool, which required the application of hand forces to control a cursor's motion on a screen. In areas PFG/PF, the activity of ∼ 70% neurons was modulated by the hand force necessary to implement the desired target motion, reflecting an inverse model, rather than by the intended motion of the visual cursor (forward model). The population vector matched the direction and amplitude of the instantaneous force increments over time. When exposed to a new force condition, that obliged the monkey to change the force output to successfully bring the cursor to the final target, the activity of a consistent subpopulation of neurons changed in an orderly fashion and, at the end of a "Wash-out" session, retained memory of the new learned association, at the service of predictive control of force. Our findings suggest that areas PFG/PF represent a crucial node of the distributed control of hand force, by encoding instantaneous force variations and serving as a memory reservoir of hand dynamics required for object manipulation and tool use. This is coherent with previous studies in humans showing the following: (1) impaired adaptation to a new force field under TMS parietal perturbation; (2) defective control of direction of hand force after parietal lesion; and (3) fMRI activation of parietal cortex during object manipulation requiring control of fine hand forces.

SIGNIFICANCE STATEMENT

Skilled object manipulation and tool use are major achievements of primate evolution, both largely dependent on posterior parietal cortex (PPC) expansion. Neurophysiological and fMRI studies in macaque and humans had documented a crucial role of PPC in encoding the hand kinematics underlying these functions, leaving to premotor and motor areas the role of specifying the underlying hand forces. We recorded spiking activity from macaque PPC during manipulation of an isometric tool and found that population activity is not only modulated by the dynamic hand force and its change over time, but also retains memory of the exerted force, as a reservoir to guide of future hand action. This suggests parallel parietal encoding of hand dynamics and kinematics during object manipulation.

摘要

未标注

灵长类动物进化的主要成就包括熟练的手部与物体交互及工具使用,这两者部分依赖于顶叶皮层的扩展。我们在等距工具的定向操作过程中记录了猕猴下顶叶皮层的尖峰活动,该操作需要施加手部力量来控制屏幕上光标的运动。在PFG/PF区域,约70%的神经元活动受到实现期望目标运动所需手部力量的调制,反映出一种逆模型,而非视觉光标(前向模型)的预期运动。总体向量与随时间变化的瞬时力增量的方向和幅度相匹配。当暴露于新的力条件下,这迫使猴子改变力输出以成功将光标移至最终目标时,一组一致的神经元亚群的活动会有序变化,并且在“洗脱”阶段结束时,保留对新学习关联的记忆,以用于力的预测控制。我们的研究结果表明,PFG/PF区域通过编码瞬时力变化并作为物体操作和工具使用所需手部动力学的记忆库,代表了手部力量分布式控制的关键节点。这与先前在人类中的研究结果一致,这些研究表明:(1)在经颅磁刺激顶叶扰动下对新力场的适应受损;(2)顶叶损伤后手力方向控制缺陷;(3)在需要精细手部力量控制的物体操作过程中顶叶皮层的功能磁共振成像激活。

意义声明

熟练的物体操作和工具使用是灵长类动物进化的主要成就,两者在很大程度上依赖于后顶叶皮层(PPC)的扩展。对猕猴和人类的神经生理学和功能磁共振成像研究记录了PPC在编码这些功能背后的手部运动学方面的关键作用,而将指定潜在手部力量的作用留给了运动前区和运动区。我们在等距工具操作过程中记录了猕猴PPC的尖峰活动,发现总体活动不仅受到动态手部力量及其随时间变化的调制,还保留了施加力的记忆,作为指导未来手部动作的储备。这表明在物体操作过程中手部动力学和运动学存在并行的顶叶编码。

相似文献

1
Posterior Parietal Cortex Encoding of Dynamic Hand Force Underlying Hand-Object Interaction.
J Neurosci. 2015 Aug 5;35(31):10899-910. doi: 10.1523/JNEUROSCI.4696-14.2015.
2
Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey.
J Neurophysiol. 2009 Dec;102(6):3310-28. doi: 10.1152/jn.90942.2008. Epub 2009 Sep 30.
4
Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors.
J Neurophysiol. 2007 Jan;97(1):387-406. doi: 10.1152/jn.00558.2006. Epub 2006 Sep 13.
6
Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network.
J Neurosci. 2015 Aug 12;35(32):11415-32. doi: 10.1523/JNEUROSCI.1714-15.2015.
8
Facilitation of neuronal activity in somatosensory and posterior parietal cortex during prehension.
Exp Brain Res. 1999 Aug;127(4):329-54. doi: 10.1007/s002210050803.
10
Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study.
J Neurophysiol. 2001 Jun;85(6):2613-23. doi: 10.1152/jn.2001.85.6.2613.

引用本文的文献

1
Modulating nociception networks: the impact of low-intensity focused ultrasound on thalamocortical connectivity.
Brain Commun. 2025 Feb 8;7(1):fcaf062. doi: 10.1093/braincomms/fcaf062. eCollection 2025.
2
A Cortical Mechanism Linking Saliency Detection and Motor Reactivity in Rhesus Monkeys.
J Neurosci. 2024 Jan 3;44(1):e0422232023. doi: 10.1523/JNEUROSCI.0422-23.2023.
3
Disrupting nociceptive information processing flow through transcranial focused ultrasound neuromodulation of thalamic nuclei.
Brain Stimul. 2023 Sep-Oct;16(5):1430-1444. doi: 10.1016/j.brs.2023.09.013. Epub 2023 Sep 21.
4
The correlation between upper body grip strength and resting-state EEG network.
Med Biol Eng Comput. 2023 Aug;61(8):2139-2148. doi: 10.1007/s11517-023-02865-4. Epub 2023 Jun 20.
5
The parietal lobe evolution and the emergence of material culture in the human genus.
Brain Struct Funct. 2023 Jan;228(1):145-167. doi: 10.1007/s00429-022-02487-w. Epub 2022 Apr 22.
6
Organization of parietoprefrontal and temporoprefrontal networks in the macaque.
J Neurophysiol. 2021 Oct 1;126(4):1289-1309. doi: 10.1152/jn.00092.2021. Epub 2021 Aug 11.
7
The Concurrent Control of Motion and Contact Force in the Presence of Predictable Disturbances.
J Mech Robot. 2019 Dec 1;11(6):060903. doi: 10.1115/1.4044599. Epub 2019 Sep 11.
8
Mini-review: The Role of the Cerebellum in Visuomotor Adaptation.
Cerebellum. 2022 Apr;21(2):306-313. doi: 10.1007/s12311-021-01281-4. Epub 2021 Jun 2.

本文引用的文献

1
Timing and communication of parietal cortex for visuomotor control.
Curr Opin Neurobiol. 2015 Aug;33:103-9. doi: 10.1016/j.conb.2015.03.005. Epub 2015 Apr 2.
2
A visuomotor disorder in the absence of movement: does optic ataxia generalize to learned isometric hand action?
Neuropsychologia. 2014 Oct;63:59-71. doi: 10.1016/j.neuropsychologia.2014.07.029. Epub 2014 Aug 1.
3
Decoding the neural mechanisms of human tool use.
Elife. 2013 May 28;2:e00425. doi: 10.7554/eLife.00425.
4
The diameter of cortical axons depends both on the area of origin and target.
Cereb Cortex. 2014 Aug;24(8):2178-88. doi: 10.1093/cercor/bht070. Epub 2013 Mar 25.
5
Selectivity for grip type and action goal in macaque inferior parietal and ventral premotor grasping neurons.
J Neurophysiol. 2012 Sep;108(6):1607-19. doi: 10.1152/jn.01158.2011. Epub 2012 Jun 27.
7
Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques.
Neuroimage. 2011 Sep 15;58(2):362-80. doi: 10.1016/j.neuroimage.2011.06.027. Epub 2011 Jun 21.
10
Time course of information representation of macaque AIP neurons in hand manipulation task revealed by information analysis.
J Neurophysiol. 2010 Dec;104(6):3625-43. doi: 10.1152/jn.00125.2010. Epub 2010 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验