文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

经颅聚焦超声刺激丘脑核团阻断伤害性信息处理流。

Disrupting nociceptive information processing flow through transcranial focused ultrasound neuromodulation of thalamic nuclei.

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

Brain Stimul. 2023 Sep-Oct;16(5):1430-1444. doi: 10.1016/j.brs.2023.09.013. Epub 2023 Sep 21.


DOI:10.1016/j.brs.2023.09.013
PMID:37741439
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10702144/
Abstract

BACKGROUND: MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE: To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS: BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS: The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.

摘要

背景:作为一种新一代的神经调控工具,磁共振引导经颅聚焦超声(MRgFUS)可以精确地靶向和刺激具有高空间选择性的深部脑区。结合磁共振-ARFI(声辐射力成像)并使用 fMRI BOLD 信号作为功能读出,我们之前的研究表明,低强度的 FUS 可以兴奋或抑制躯体感觉皮层中的神经活动。 目的:研究低强度 FUS 是否可以抑制手部刺激时痛觉热刺激引起的丘脑核团反应,并确定这种抑制如何影响痛觉网络内的信息处理流程。 发现:在手的 47.5°C 热刺激下,检测到 24 个皮质区域的 BOLD fMRI 激活,这些区域属于感觉、情感和认知痛觉网络。同时给予低强度 FUS 脉冲(650 kHz,550 kPa)到预先设定的热伤害性刺激反应性丘脑中央中旁(CM_para)、中背(MD)、腹外侧(VL_和腹外侧后腹(VLpv)核团,抑制其热反应。非靶区皮质区的 fMRI 信号变化表现为减少、增强或无明显变化,这取决于特定区域。观察到痛觉热输入处理过程中的可区分的丘脑皮质信息流,表现在达到热诱发 BOLD 信号峰值的 10%或 30%的时间。丘脑热反应的抑制显著改变了丘脑和皮质区之间的痛觉处理流和方向。单侧丘脑活动对同侧和对侧区域的调制不同。在背侧额(DFC)和腹侧前额(vlPFC)皮质等高阶皮质区检测到的信号表现出比感觉区更快的反应潜伏期。 结论:FUS 的同时给药抑制了丘脑核团的伤害性热反应,并破坏了伤害性网络。本研究提供了关于丘脑皮质网络内因果功能连接的新见解,并证明了低强度 FUS 对伤害性信息处理的调制作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/a4b0dc25cef1/nihms-1941408-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/ccea23cdb658/nihms-1941408-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/c37b33e48081/nihms-1941408-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/c4805541065f/nihms-1941408-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/0c2f1dfea1aa/nihms-1941408-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/ec647553b105/nihms-1941408-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/5b35c9bc8232/nihms-1941408-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/a4b0dc25cef1/nihms-1941408-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/ccea23cdb658/nihms-1941408-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/c37b33e48081/nihms-1941408-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/c4805541065f/nihms-1941408-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/0c2f1dfea1aa/nihms-1941408-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/ec647553b105/nihms-1941408-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/5b35c9bc8232/nihms-1941408-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10702144/a4b0dc25cef1/nihms-1941408-f0007.jpg

相似文献

[1]
Disrupting nociceptive information processing flow through transcranial focused ultrasound neuromodulation of thalamic nuclei.

Brain Stimul. 2023

[2]
Differential dose responses of transcranial focused ultrasound at brain regions indicate causal interactions.

Brain Stimul. 2022

[3]
Graph theory analysis identified two hubs that connect sensorimotor and cognitive and cortical and subcortical nociceptive networks in the non-human primate.

Neuroimage. 2022-8-15

[4]
Thalamic Responses to Nociceptive-Specific Input in Humans: Functional Dichotomies and Thalamo-Cortical Connectivity.

Cereb Cortex. 2016-6

[5]
Bidirectional and state-dependent modulation of brain activity by transcranial focused ultrasound in non-human primates.

Brain Stimul. 2021

[6]
Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound.

J Neurosurg. 2017-4-21

[7]
Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli.

J Neurophysiol. 1980-6

[8]
Mapping the effects of SI cortex stimulation on somatosensory relay neurons in the rat thalamus: direct responses and afferent modulation.

Somatosens Mot Res. 1990

[9]
Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas.

J Neurosci. 2002-9-15

[10]
Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei.

Neuroimage. 2019-4-1

引用本文的文献

[1]
The efficacy and mechanisms of low-intensity transcranial ultrasound stimulation on pain: a systematic review of human and animal studies.

J Headache Pain. 2025-7-22

[2]
Biochemical strategies for opioid-sparing pain management in the operating room.

Biochem Biophys Rep. 2025-1-25

[3]
Modulating nociception networks: the impact of low-intensity focused ultrasound on thalamocortical connectivity.

Brain Commun. 2025-2-8

[4]
Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI).

J Magn Reson Imaging. 2025-7

[5]
The safety and feasibility of transcranial direct current stimulation combined with conservative treatment for patients with cervicogenic headaches: A double-blinded randomized control study protocol.

Contemp Clin Trials Commun. 2024-9-19

[6]
Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain.

Brain Stimul. 2024

[7]
Anatomo-physiological basis and applied techniques of electrical neuromodulation in chronic pain.

J Anesth Analg Crit Care. 2024-5-2

[8]
Practical Targeting Errors During Optically Tracked Transcranial Focused Ultrasound Using MR-ARFI and Array- Based Steering.

IEEE Trans Biomed Eng. 2024-9

本文引用的文献

[1]
Differential dose responses of transcranial focused ultrasound at brain regions indicate causal interactions.

Brain Stimul. 2022

[2]
Treatment of Chronic Refractory Pain by Combined Deep Brain Stimulation of the Anterior Cingulum and Sensory Thalamus (EMOPAIN Study): Rationale and Protocol of a Feasibility and Safety Study.

Brain Sci. 2022-8-23

[3]
Sonication of the Anterior Thalamus With MRI-Guided Transcranial Focused Ultrasound (tFUS) Alters Pain Thresholds in Healthy Adults: A Double-Blind, Sham-Controlled Study.

Focus (Am Psychiatr Publ). 2022-1

[4]
Deep Brain Stimulation for Chronic Pain.

Neurosurg Clin N Am. 2022-7

[5]
Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety.

Brain Stimul. 2022

[6]
Graph theory analysis identified two hubs that connect sensorimotor and cognitive and cortical and subcortical nociceptive networks in the non-human primate.

Neuroimage. 2022-8-15

[7]
Thalamocortical Mechanisms for Nostalgia-Induced Analgesia.

J Neurosci. 2022-4-6

[8]
Non-invasive transcranial ultrasound stimulation for neuromodulation.

Clin Neurophysiol. 2022-3

[9]
A thermal nociceptive patch in the S2 cortex of nonhuman primates: a combined functional magnetic resonance imaging and electrophysiology study.

Pain. 2021-11-1

[10]
A Multisensory fMRI Investigation of Nociceptive-Preferential Cortical Regions and Responses.

Front Neurosci. 2021-4-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索