Suppr超能文献

基于近红外光谱和化学计量学的金银花与青蒿液-液萃取在线定量监测

On-line quantitative monitoring of liquid-liquid extraction of Lonicera japonica and Artemisia annua using near-infrared spectroscopy and chemometrics.

作者信息

Wu Sha, Jin Ye, Liu Qian, Liu Qi-An, Wu Jianxiong, Bi Yu-An, Wang Zhengzhong, Xiao Wei

机构信息

College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China.

College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China.

出版信息

Pharmacogn Mag. 2015 Jul-Sep;11(43):643-50. doi: 10.4103/0973-1296.160465.

Abstract

BACKGROUND

Liquid-liquid extraction of Lonicera japonica and Artemisia annua (JQ) plays a significant role in manufacturing Reduning injection. Many process parameters may influence liquid-liquid extraction and cause fluctuations in product quality.

OBJECTIVE

To develop a near-infrared (NIR) spectroscopy method for on-line monitoring of liquid-liquid extraction of JQ.

MATERIALS AND METHODS

Eleven batches of JQ extraction solution were obtained, ten for building quantitative models and one for assessing the predictive accuracy of established models. Neochlorogenic acid (NCA), chlorogenic acid (CA), cryptochlorogenic acid (CCA), isochlorogenic acid B (ICAB), isochlorogenic acid A (ICAA), isochlorogenic acid C (ICAC) and soluble solid content (SSC) were selected as quality control indicators, and measured by reference methods. NIR spectra were collected in transmittance mode. After selecting the spectral sub-ranges, optimizing the spectral pretreatment and neglecting outliers, partial least squares regression models were built to predict the content of indicators. The model performance was evaluated by the coefficients of determination (R (2)), the root mean square errors of prediction (RMSEP) and the relative standard error of prediction (RSEP).

RESULTS

For NCA, CA, CCA, ICAB, ICAA, ICAC and SSC, R (2) was 0.9674, 0.9704, 0.9641, 0.9514, 0.9436, 0.9640, 0.9809, RMSEP was 0.0280, 0.2913, 0.0710, 0.0590, 0.0815, 0.1506, 1.167, and RSEP was 2.32%, 4.14%, 3.86%, 5.65%, 7.29%, 6.95% and 4.18%, respectively.

CONCLUSION

This study demonstrated that NIR spectroscopy could provide good predictive ability in monitoring of the content of quality control indicators in liquid-liquid extraction of JQ.

摘要

背景

金银花和青蒿(JQ)的液液萃取在热毒宁注射液生产中起重要作用。许多工艺参数可能影响液液萃取并导致产品质量波动。

目的

建立一种近红外(NIR)光谱法用于在线监测JQ的液液萃取过程。

材料与方法

获取11批JQ萃取液,其中10批用于建立定量模型,1批用于评估所建模型的预测准确性。选择新绿原酸(NCA)、绿原酸(CA)、隐绿原酸(CCA)、异绿原酸B(ICAB)、异绿原酸A(ICAA)、异绿原酸C(ICAC)和可溶性固形物含量(SSC)作为质量控制指标,并采用参考方法进行测定。以透射模式采集近红外光谱。在选择光谱子范围、优化光谱预处理并剔除异常值后,建立偏最小二乘回归模型以预测指标含量。通过决定系数(R(2))、预测均方根误差(RMSEP)和预测相对标准误差(RSEP)评估模型性能。

结果

对于NCA、CA、CCA、ICAB、ICAA、ICAC和SSC,R(2)分别为0.9674、0.9704、0.9641、0.9514、0.9436、0.9640、0.9809,RMSEP分别为0.0280、0.2913、0.0710、0.0590、0.0815、0.1506、1.167,RSEP分别为2.32%、4.14%、3.86%、5.65%、7.29%、6.95%和4.18%。

结论

本研究表明,近红外光谱法在监测JQ液液萃取过程中质量控制指标含量方面具有良好的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382f/4522855/93ee40660723/PM-11-643-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验