Wu Sha, Jin Ye, Liu Qian, Liu Qi-An, Wu Jianxiong, Bi Yu-An, Wang Zhengzhong, Xiao Wei
College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China.
College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China.
Pharmacogn Mag. 2015 Jul-Sep;11(43):643-50. doi: 10.4103/0973-1296.160465.
Liquid-liquid extraction of Lonicera japonica and Artemisia annua (JQ) plays a significant role in manufacturing Reduning injection. Many process parameters may influence liquid-liquid extraction and cause fluctuations in product quality.
To develop a near-infrared (NIR) spectroscopy method for on-line monitoring of liquid-liquid extraction of JQ.
Eleven batches of JQ extraction solution were obtained, ten for building quantitative models and one for assessing the predictive accuracy of established models. Neochlorogenic acid (NCA), chlorogenic acid (CA), cryptochlorogenic acid (CCA), isochlorogenic acid B (ICAB), isochlorogenic acid A (ICAA), isochlorogenic acid C (ICAC) and soluble solid content (SSC) were selected as quality control indicators, and measured by reference methods. NIR spectra were collected in transmittance mode. After selecting the spectral sub-ranges, optimizing the spectral pretreatment and neglecting outliers, partial least squares regression models were built to predict the content of indicators. The model performance was evaluated by the coefficients of determination (R (2)), the root mean square errors of prediction (RMSEP) and the relative standard error of prediction (RSEP).
For NCA, CA, CCA, ICAB, ICAA, ICAC and SSC, R (2) was 0.9674, 0.9704, 0.9641, 0.9514, 0.9436, 0.9640, 0.9809, RMSEP was 0.0280, 0.2913, 0.0710, 0.0590, 0.0815, 0.1506, 1.167, and RSEP was 2.32%, 4.14%, 3.86%, 5.65%, 7.29%, 6.95% and 4.18%, respectively.
This study demonstrated that NIR spectroscopy could provide good predictive ability in monitoring of the content of quality control indicators in liquid-liquid extraction of JQ.
金银花和青蒿(JQ)的液液萃取在热毒宁注射液生产中起重要作用。许多工艺参数可能影响液液萃取并导致产品质量波动。
建立一种近红外(NIR)光谱法用于在线监测JQ的液液萃取过程。
获取11批JQ萃取液,其中10批用于建立定量模型,1批用于评估所建模型的预测准确性。选择新绿原酸(NCA)、绿原酸(CA)、隐绿原酸(CCA)、异绿原酸B(ICAB)、异绿原酸A(ICAA)、异绿原酸C(ICAC)和可溶性固形物含量(SSC)作为质量控制指标,并采用参考方法进行测定。以透射模式采集近红外光谱。在选择光谱子范围、优化光谱预处理并剔除异常值后,建立偏最小二乘回归模型以预测指标含量。通过决定系数(R(2))、预测均方根误差(RMSEP)和预测相对标准误差(RSEP)评估模型性能。
对于NCA、CA、CCA、ICAB、ICAA、ICAC和SSC,R(2)分别为0.9674、0.9704、0.9641、0.9514、0.9436、0.9640、0.9809,RMSEP分别为0.0280、0.2913、0.0710、0.0590、0.0815、0.1506、1.167,RSEP分别为2.32%、4.14%、3.86%、5.65%、7.29%、6.95%和4.18%。
本研究表明,近红外光谱法在监测JQ液液萃取过程中质量控制指标含量方面具有良好的预测能力。