Ross Matthew R, White Aaron M, Yu Fangting, King John T, Pecoraro Vincent L, Kubarych Kevin J
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
J Am Chem Soc. 2015 Aug 19;137(32):10164-76. doi: 10.1021/jacs.5b02840. Epub 2015 Aug 6.
The ultrafast dynamics of a de novo metalloenzyme active site is monitored using two-dimensional infrared spectroscopy. The homotrimer of parallel, coiled coil α-helices contains a His3-Cu(I) metal site where CO is bound and serves as a vibrational probe of the hydrophobic interior of the self-assembled complex. The ultrafast spectral dynamics of Cu-CO reveals unprecedented ultrafast (2 ps) nonequilibrium structural rearrangements launched by vibrational excitation of CO. This initial rapid phase is followed by much slower ∼40 ps vibrational relaxation typical of metal-CO vibrations in natural proteins. To identify the hidden coupled coordinate, small molecule analogues and the full peptide were studied by QM and QM/MM calculations, respectively. The calculations show that variation of the histidines' dihedral angles in coordinating Cu controls the coupling between the CO stretch and the Cu-C-O bending coordinates. Analysis of different optimized structures with significantly different electrostatic field magnitudes at the CO ligand site indicates that the origin of the stretch-bend coupling is not directly due to through-space electrostatics. Instead, the large, ∼3.6 D dipole moments of the histidine side chains effectively transduce the electrostatic environment to the local metal coordination orientation. The sensitivity of the first coordination sphere to the protein electrostatics and its role in altering the potential energy surface of the bound ligands suggests that long-range electrostatics can be leveraged to fine-tune function through enzyme design.
利用二维红外光谱监测了一种全新金属酶活性位点的超快动力学。由平行的卷曲螺旋α-螺旋组成的同三聚体包含一个His3-Cu(I)金属位点,CO结合在该位点上,并作为自组装复合物疏水内部的振动探针。Cu-CO的超快光谱动力学揭示了由CO的振动激发引发的前所未有的超快(2皮秒)非平衡结构重排。在这个初始的快速阶段之后,是典型的天然蛋白质中金属-CO振动的约40皮秒的慢得多的振动弛豫。为了确定隐藏的耦合坐标,分别通过量子力学(QM)和量子力学/分子力学(QM/MM)计算研究了小分子类似物和完整肽。计算表明,配位Cu时组氨酸二面角的变化控制了CO伸缩振动与Cu-C-O弯曲坐标之间的耦合。对CO配体位点具有显著不同静电场强度的不同优化结构的分析表明,伸缩-弯曲耦合的起源并非直接源于空间静电作用。相反,组氨酸侧链的大偶极矩(约3.6 D)有效地将静电环境传导至局部金属配位方向。第一配位层对蛋白质静电作用的敏感性及其在改变结合配体势能面中的作用表明,长程静电作用可通过酶设计来微调功能。