Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
Phys Rev Lett. 2015 Jul 24;115(4):045304. doi: 10.1103/PhysRevLett.115.045304. Epub 2015 Jul 22.
We design an interaction-driven topological insulator for fermionic cold atoms in an optical lattice; that is, we pose the question of whether we can realize in a continuous space a spontaneous symmetry breaking induced by the interatom interaction into a topological Chern insulator. Such a state, sometimes called a "topological Mott insulator," has yet to be realized in solid-state systems, since this requires, in the tight-binding model, large off-site interactions on top of a small on-site interaction. Here, we overcome the difficulty by introducing a spin-dependent potential, where a spin-selective occupation of fermions in A and B sublattices makes the on-site interaction Pauli forbidden, while a sizeable intersite interaction is achieved by a shallow optical potential with a large overlap between neighboring Wannier orbitals. This puts the system away from the tight-binding model, so that we adopt density functional theory for cold atoms, here extended to accommodate noncollinear spin structures emerging in the topological regime, to quantitatively demonstrate the phase transition to the topological Mott insulator.
我们设计了一种用于冷原子在光晶格中相互作用的拓扑绝缘体;也就是说,我们提出了这样一个问题:在连续空间中,我们是否可以实现由原子间相互作用引起的自发对称破缺,从而进入拓扑陈绝缘体。这种状态,有时也被称为“拓扑莫特绝缘体”,尚未在固态系统中实现,因为在紧束缚模型中,这需要在小的局域相互作用之上叠加大的非局域相互作用。在这里,我们通过引入一个自旋相关的势能来克服这个困难,其中费米子在 A 和 B 子晶格中的自旋选择性占据使得局域相互作用受到泡利禁止,而通过具有大重叠的浅光学势实现可观的非局域相互作用,这使得相邻的 Wannier 轨道之间的相互作用。这使得系统远离紧束缚模型,因此我们采用冷原子的密度泛函理论,这里扩展到适应拓扑区出现的非共线自旋结构,以定量地证明到拓扑莫特绝缘体的相变。