Department of Physics, University of Pavia, via Bassi 6, 27100 Pavia, Italy.
Phys Rev Lett. 2013 May 24;110(21):211603. doi: 10.1103/PhysRevLett.110.211603. Epub 2013 May 23.
Abelian Chern-Simons-Maxwell theory can emerge from the bosonization of the (2+1)-dimensional Thirring model that describes interacting Dirac fermions. Here we show how the Thirring model manifests itself in the low energy limit of a two-dimensional tight-binding model of spinless fermions. To establish that, we employ a modification of Haldane's model, where the "doubling" of fermions is rectified by adiabatic elimination. Subsequently, fermionic interactions are introduced that lead to the analytically tractable Thirring model. By local density measurements of the lattice fermions we can establish that for specific values of the couplings the model exhibits the confining (2+1)-dimensional QED phase or a topological ordered phase that corresponds to the Chern-Simons theory. The implementation of the model as well as the measurement protocol are accessible with the current technology of cold atoms in optical lattices.
阿贝尔 Chern-Simons-Maxwell 理论可以从描述相互作用的狄拉克费米子的(2+1)维 Thirring 模型的玻色化中出现。在这里,我们展示了 Thirring 模型如何在无自旋费米子的二维紧束缚模型的低能极限中表现出来。为了做到这一点,我们采用了 Haldane 模型的一种修正,其中通过绝热消除来纠正费米子的“倍增”。随后,引入了导致可解析处理的 Thirring 模型的费米子相互作用。通过对格子费米子的局部密度测量,我们可以确定对于特定的耦合值,该模型表现出约束的(2+1)维 QED 相或对应于 Chern-Simons 理论的拓扑有序相。该模型的实现以及测量方案可以通过当前冷原子在光晶格中的技术来实现。