Suppr超能文献

一种用于蛋白质折叠识别的物理化学和基于进化的特征提取方法的混合方法。

A mixture of physicochemical and evolutionary-based feature extraction approaches for protein fold recognition.

作者信息

Dehzangi Abdollah, Sharma Alok, Lyons James, Paliwal Kuldip K, Sattar Abdul

出版信息

Int J Data Min Bioinform. 2015;11(1):115-38. doi: 10.1504/ijdmb.2015.066359.

Abstract

Recent advancement in the pattern recognition field stimulates enormous interest in Protein Fold Recognition (PFR). PFR is considered as a crucial step towards protein structure prediction and drug design. Despite all the recent achievements, the PFR still remains as an unsolved issue in biological science and its prediction accuracy still remains unsatisfactory. Furthermore, the impact of using a wide range of physicochemical-based attributes on the PFR has not been adequately explored. In this study, we propose a novel mixture of physicochemical and evolutionary-based feature extraction methods based on the concepts of segmented distribution and density. We also explore the impact of 55 different physicochemical-based attributes on the PFR. Our results show that by providing more local discriminatory information as well as obtaining benefit from both physicochemical and evolutionary-based features simultaneously, we can enhance the protein fold prediction accuracy up to 5% better than previously reported results found in the literature.

摘要

模式识别领域的最新进展激发了人们对蛋白质折叠识别(PFR)的极大兴趣。PFR被认为是蛋白质结构预测和药物设计的关键步骤。尽管最近取得了所有这些成就,但PFR在生物科学中仍然是一个未解决的问题,其预测准确性仍然不尽人意。此外,使用广泛的基于物理化学的属性对PFR的影响尚未得到充分探索。在本研究中,我们基于分段分布和密度的概念,提出了一种新颖的基于物理化学和进化的特征提取方法的混合方法。我们还探讨了55种不同的基于物理化学的属性对PFR的影响。我们的结果表明,通过提供更多的局部判别信息以及同时从基于物理化学和进化的特征中获益,我们可以将蛋白质折叠预测准确性提高到比文献中先前报道的结果高出5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验