Lusardi Theresa A, Akula Kiran K, Coffman Shayla Q, Ruskin David N, Masino Susan A, Boison Detlev
RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT 06106, USA.
Neuropharmacology. 2015 Dec;99:500-9. doi: 10.1016/j.neuropharm.2015.08.007. Epub 2015 Aug 6.
Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects.
癫痫是一种高度流行的发作性疾病,其严重程度往往会不断进展,且会变得难以治疗。然而,尚无疗法被证明能阻止疾病进展或预防癫痫的发生。由于高脂肪低碳水化合物生酮饮食(KD)可增强大脑中的腺苷信号,且腺苷不仅能抑制癫痫发作,还会影响癫痫发生,因此我们推测生酮饮食可能通过类似机制预防癫痫发生。在此,我们在两种独立的癫痫发生啮齿动物模型中验证了这一假设。利用小鼠戊四氮点燃模型,我们首先发现,生酮饮食而非传统抗癫痫药物(丙戊酸)可抑制点燃性癫痫发生。重要的是,在治疗逆转后,在生酮饮食条件下点燃的动物其癫痫阈值仍保持升高,而在丙戊酸条件下点燃的动物则不然。接下来,我们测试了生酮饮食是否能在进行性癫痫的临床相关模型中阻止疾病进展。对在毛果芸香碱诱导的癫痫持续状态后出现自发性反复癫痫发作的癫痫大鼠,分别给予生酮饮食或对照饮食(CD)。在给予对照饮食的动物中,癫痫发作的严重程度和频率不断进展,而给予生酮饮食的动物癫痫发作时间延长,且在饮食逆转后仍持续。生酮饮食治疗与腺苷增加和DNA甲基化减少有关,后者在停止饮食后仍保持。我们的研究结果表明,生酮饮食在两种机制不同的癫痫模型中均能阻止疾病进展,并提示了其治疗作用背后的一种表观遗传机制。