Key Laboratory of Superlight Material and Surface Technology, Harbin Engineering University, Harbin, 150001, P.R. China.
Nanoscale. 2015 Oct 7;7(37):15159-67. doi: 10.1039/c5nr02961a.
Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm(-2) at a current density of 2 mA cm(-2), which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm(-2). An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm(-2)) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg(-1) (3.522 mW h cm(-3)), demonstrating great potential for practical applications in flexible energy storage electronics.
柔性全固态超级电容器因其体积小、成本低、重量轻、可穿戴性高等优点,作为新型储能器件具有广阔的应用前景。然而,制造柔性全固态超级电容器的一个主要挑战取决于电极材料性能的提高,如更高的导电性和更长的循环稳定性。在本文中,我们提出了一种简单的策略,通过原位合成一维 CoMoO4 纳米线(NWs),利用高导电性 CC 和电导率 PPy 包裹层在 CoMoO4 NW 阵列上,制备高性能电极材料。结果表明,CoMoO4/PPy 杂化 NW 电极在 2 mA cm(-2)的电流密度下表现出约 1.34 F cm(-2)的高比面积比电容,明显优于纯 CoMoO4 NW 电极的 0.7 F cm(-2)。与原始 CoMoO4 NWs 相比,纳米复合材料在 2000 次循环后具有高达 95.2%(约 1.12 F cm(-2))的优异循环性能。此外,我们制备了柔性全固态 ASC,其在 0-1.7 V 的电压范围内可循环可逆,具有 104.7 W h kg(-1)(3.522 mW h cm(-3))的最大能量密度,为柔性储能电子器件的实际应用展示了巨大的潜力。