Ai Yuanfei, Geng Xuewen, Lou Zheng, Wang Zhiming M, Shen Guozhen
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , Chengdu 610054, China.
State Key Laboratory of Superlattices and Microstructures, Institution of Semiconductors, Chinese Academy of Science , Beijing 100083, China.
ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24204-11. doi: 10.1021/acsami.5b07599. Epub 2015 Oct 22.
Effectively composite materials with optimized structures exhibited promising potential in continuing improving the electrochemical performances of supercapacitors in the past few years. Here, we proposed a rational design of branched CoMoO4@CoNiO2 core/shell nanowire arrays on Ni foam by two steps of hydrothermal processing. Owing to the high activity of the scaffold-like CoMoO4 nanowires and the well-defined CoNiO2 nanoneedles, the three-dimensional (3D) electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (5.31 F/cm(2) at 5 mA/cm(2)) and superior cycling stability(159% of the original specific capacitance, i.e., 95.7% of the maximum retained after 5000 cycles at 30 mA/cm(2)). The all-solid-state asymmetric supercapacitors composed of such electrode and activated carbon (AC) exhibited an areal specific capacitance of 1.54 F/cm(2) at 10 mA/cm(2) and a rate capability (59.75 Wh/kg at a 1464 W/kg) comparable with Li-ion batteries. It also showed an excellent cycling stability with no capacitance attenuation after 50000 cycles at 100 mA/cm(2). After rapid charging (1 s), such supercapacitors in series could lighten a red LED for a long time and drive a mini motor effectively, demonstrating advances in energy storage, scalable integrated applications, and promising commercial potential.
在过去几年中,具有优化结构的有效复合材料在持续提升超级电容器的电化学性能方面展现出了巨大潜力。在此,我们通过两步水热法在泡沫镍上合理设计了枝状CoMoO4@CoNiO2核壳纳米线阵列。由于支架状CoMoO4纳米线的高活性以及明确的CoNiO2纳米针,这种三维(3D)电极结构实现了卓越的电化学性能,具有高面积比电容(在5 mA/cm²时为5.31 F/cm²)和出色的循环稳定性(原始比电容的159%,即在30 mA/cm²下5000次循环后保留的最大比电容的95.7%)。由这种电极和活性炭(AC)组成的全固态非对称超级电容器在10 mA/cm²时面积比电容为1.54 F/cm²,功率密度(在1464 W/kg时为59.75 Wh/kg)与锂离子电池相当。在100 mA/cm²下50000次循环后,它还表现出优异的循环稳定性,电容无衰减。快速充电(1 s)后,这种串联的超级电容器能够长时间点亮红色发光二极管并有效驱动小型电机,展示了在能量存储、可扩展集成应用方面的进展以及巨大的商业潜力。