Suppr超能文献

用于太阳能驱动光催化的选择性掺杂有机辅助先进氧化锌纳米材料的水热制备

Hydrothermal fabrication of selectively doped organic assisted advanced ZnO nanomaterial for solar driven photocatalysis.

作者信息

Namratha K, Byrappa K, Byrappa S, Venkateswarlu P, Rajasekhar D, Deepthi B K

机构信息

Center for Material Science and Technology, Vijnan Bhavan, Manasagangotri, P. B. No 21, University of Mysore, Mysore 570006, India.

Center for Material Science and Technology, Vijnan Bhavan, Manasagangotri, P. B. No 21, University of Mysore, Mysore 570006, India.

出版信息

J Environ Sci (China). 2015 Aug 1;34:248-55. doi: 10.1016/j.jes.2015.04.012. Epub 2015 Jul 3.

Abstract

Hydrothermal fabrication of selectively doped (Ag(+)+Pd(3+)) advanced ZnO nanomaterial has been carried out under mild pressure temperature conditions (autogeneous; 150°C). Gluconic acid has been used as a surface modifier to effectively control the particle size and morphology of these ZnO nanoparticles. The experimental parameters were tuned to achieve optimum conditions for the synthesis of selectively doped ZnO nanomaterials with an experimental duration of 4 hr. These selectively doped ZnO nanoparticles were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy and scanning electron microscopy (SEM). The solar driven photocatalytic studies have been carried out for organic dyes, i.e., Procion MX-5B dye, Cibacron Brilliant Yellow dye, Indigo Carmine dye, separately and all three mixed, by using gluconic acid modified selectively doped advanced ZnO nanomaterial. The influence of catalyst, its concentration and initial dye concentration resulted in the photocatalytic efficiency of 89% under daylight.

摘要

在温和的压力温度条件下(自生压力;150°C)进行了选择性掺杂(Ag(+)+Pd(3+))的高级ZnO纳米材料的水热制备。葡萄糖酸被用作表面改性剂,以有效控制这些ZnO纳米颗粒的粒径和形态。调整实验参数以实现合成选择性掺杂ZnO纳米材料的最佳条件,实验持续时间为4小时。使用粉末X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外可见光谱和扫描电子显微镜(SEM)对这些选择性掺杂的ZnO纳米颗粒进行了表征。通过使用葡萄糖酸改性的选择性掺杂高级ZnO纳米材料,分别对有机染料即普施安MX-5B染料、汽巴克隆亮黄染料、靛蓝胭脂红染料以及所有三种染料混合进行了太阳能驱动的光催化研究。催化剂、其浓度和初始染料浓度的影响导致在日光下光催化效率达到89%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验