Suppr超能文献

使用全基因组选择成分分析来识别性选择的特征。

Identifying signatures of sexual selection using genomewide selection components analysis.

作者信息

Flanagan Sarah P, Jones Adam G

机构信息

Biology Department, Texas A&M University 3258 TAMU, College Station, Texas, 77843.

出版信息

Ecol Evol. 2015 Jul;5(13):2722-44. doi: 10.1002/ece3.1546. Epub 2015 Jun 19.

Abstract

Sexual selection must affect the genome for it to have an evolutionary impact, yet signatures of selection remain elusive. Here we use an individual-based model to investigate the utility of genome-wide selection components analysis, which compares allele frequencies of individuals at different life history stages within a single population to detect selection without requiring a priori knowledge of traits under selection. We modeled a diploid, sexually reproducing population and introduced strong mate choice on a quantitative trait to simulate sexual selection. Genome-wide allele frequencies in adults and offspring were compared using weighted F ST values. The average number of outlier peaks (i.e., those with significantly large F ST values) with a quantitative trait locus in close proximity ("real" peaks) represented correct diagnoses of loci under selection, whereas peaks above the F ST significance threshold without a quantitative trait locus reflected spurious peaks. We found that, even with moderate sample sizes, signatures of strong sexual selection were detectable, but larger sample sizes improved detection rates. The model was better able to detect selection with more neutral markers, and when quantitative trait loci and neutral markers were distributed across multiple chromosomes. Although environmental variation decreased detection rates, the identification of real peaks nevertheless remained feasible. We also found that detection rates can be improved by sampling multiple populations experiencing similar selection regimes. In short, genome-wide selection components analysis is a challenging but feasible approach for the identification of regions of the genome under selection.

摘要

性选择必须影响基因组才能产生进化影响,然而选择的特征仍然难以捉摸。在这里,我们使用基于个体的模型来研究全基因组选择成分分析的效用,该分析比较单个种群中不同生活史阶段个体的等位基因频率,以检测选择,而无需事先了解受选择的性状。我们模拟了一个二倍体有性繁殖种群,并在一个数量性状上引入了强烈的配偶选择来模拟性选择。使用加权F ST值比较成年个体和后代的全基因组等位基因频率。与数量性状基因座紧密相邻的异常峰值(即F ST值显著较大的峰值)的平均数量(“真实”峰值)代表了对受选择基因座的正确诊断,而没有数量性状基因座但高于F ST显著性阈值的峰值则反映了假阳性峰值。我们发现,即使样本量适中,强烈性选择的特征也是可检测的,但样本量越大,检测率越高。该模型在使用更多中性标记时,以及当数量性状基因座和中性标记分布在多条染色体上时,能更好地检测选择。尽管环境变异降低了检测率,但识别真实峰值仍然是可行的。我们还发现,通过对经历相似选择模式的多个种群进行采样,可以提高检测率。简而言之,全基因组选择成分分析是一种具有挑战性但可行的方法,用于识别基因组中受选择的区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9283/4523367/4927a93e1370/ece30005-2722-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验