Opt Lett. 2015 Aug 1;40(15):3603-6. doi: 10.1364/OL.40.003603.
We investigate the gradual emergence of the disorder-related phenomena in intermediate regimes between a deterministic periodic Bragg grating and a fully random grating and highlight two critical properties of partially disordered Bragg gratings. First, the integral of the logarithm of the transmittance over the reciprocal wavevector space is a conserved quantity. Therefore, adding disorder merely redistributes the transmittance over the reciprocal space. Second, for any amount of disorder, the average transmittance decays exponentially with the number of grating layers in the simple form of exp(-ηN) for sufficiently large N, where η is a constant, and N is the number of layers. Conversely, the simple exponential decay form does not hold for small N except for a highly disordered system. Implications of these findings are demonstrated.
我们研究了在确定的周期性布拉格光栅和完全随机光栅之间的中间状态下,无序相关现象的逐渐出现,并强调了部分无序布拉格光栅的两个关键性质。首先,透过率的对数在倒易波矢空间上的积分是一个守恒量。因此,添加无序只会在倒易空间中重新分配透过率。其次,对于任何程度的无序,平均透过率以简单的形式指数衰减随着光栅层数的增加,在足够大的 N 时,形式为 exp(-ηN),其中 η 是常数,N 是层数。相反,除了高度无序的系统外,简单的指数衰减形式不适用于小 N。这些发现的意义得到了证明。