Egbujo Chijioke N, Sinclair Duncan, Borgmann-Winter Karin E, Arnold Steven E, Turetsky Bruce I, Hahn Chang-Gyu
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Schizophr Res. 2015 Oct;168(1-2):554-62. doi: 10.1016/j.schres.2015.07.026. Epub 2015 Aug 7.
Multiple lines of evidence suggest altered synaptic plasticity/connectivity as a pathophysiologic mechanism for various symptom domains of schizophrenia. Olfactory dysfunction, an endophenotype of schizophrenia, reflects altered activity of the olfactory circuitry, which conveys signals from olfactory receptor neurons to the olfactory cortex via synaptic connections in the glomeruli of the olfactory bulb. The olfactory system begins with intranasal olfactory receptor neuron axons synapsing with mitral and tufted cells in the glomeruli of the olfactory bulb, which then convey signals directly to the olfactory cortex. We hypothesized that olfactory dysfunction in schizophrenia is associated with dysregulation of synaptic efficacy in the glomeruli of the olfactory bulb. To test this, we employed semi-quantitative immunohistochemistry to examine the olfactory bulbs of 13 postmortem samples from schizophrenia and their matched control pairs for glomerular expression of 5 pre- and postsynaptic proteins that are involved in the integrity and function of synapses. In the glomeruli of schizophrenia cases compared to their matched controls, we found significant decreases in three presynaptic proteins which play crucial roles in vesicular glutamate transport - synapsin IIa (-18.05%, p=0.019), synaptophysin (-24.08% p=0.0016) and SNAP-25 (-23.9%, p=0.046). Two postsynaptic proteins important for spine formation and glutamatergic signaling were also decreased-spinophilin (-17.40%, p=0.042) and PSD-95 (-34.06%, p=0.015). These findings provide molecular evidence for decreased efficacy of synapses within the olfactory bulb, which may represent a synaptic mechanism underlying olfactory dysfunction in schizophrenia.
多条证据表明,突触可塑性/连接性改变是精神分裂症各种症状领域的病理生理机制。嗅觉功能障碍作为精神分裂症的一种内表型,反映了嗅觉回路活动的改变,该回路通过嗅球肾小球中的突触连接将信号从嗅觉受体神经元传递到嗅觉皮层。嗅觉系统始于鼻内嗅觉受体神经元轴突与嗅球肾小球中的二尖瓣细胞和簇状细胞形成突触,然后这些细胞将信号直接传递到嗅觉皮层。我们假设精神分裂症中的嗅觉功能障碍与嗅球肾小球中突触效能的失调有关。为了验证这一点,我们采用半定量免疫组织化学方法,检查了13例精神分裂症死后样本及其匹配对照样本的嗅球中5种参与突触完整性和功能的突触前和突触后蛋白的肾小球表达。与匹配对照相比,在精神分裂症病例的肾小球中,我们发现三种在囊泡谷氨酸转运中起关键作用的突触前蛋白显著减少——突触素IIa(-18.05%,p=0.019)、突触素(-24.08%,p=0.0016)和SNAP-25(-23.9%,p=0.046)。两种对棘突形成和谷氨酸能信号传导很重要的突触后蛋白也减少了——亲棘蛋白(-17.40%,p=0.042)和PSD-95(-34.06%,p=0.015)。这些发现为嗅球内突触效能降低提供了分子证据,这可能代表了精神分裂症嗅觉功能障碍的一种突触机制。