Suppr超能文献

一个基于标准的语义元数据存储库,以支持由电子健康记录驱动的表型创作与执行。

A Standards-based Semantic Metadata Repository to Support EHR-driven Phenotype Authoring and Execution.

作者信息

Jiang Guoqian, Solbrig Harold R, Kiefer Richard, Rasmussen Luke V, Mo Huan, Speltz Peter, Thompson William K, Denny Joshua C, Chute Christopher G, Pathak Jyotishman

机构信息

Mayo Clinic College of Medicine, Rochester, MN, USA.

Northwestern University, Chicago, IL, USA.

出版信息

Stud Health Technol Inform. 2015;216:1098.

Abstract

This study describes our efforts in developing a standards-based semantic metadata repository for supporting electronic health record (EHR)-driven phenotype authoring and execution. Our system comprises three layers: 1) a semantic data element repository layer; 2) a semantic services layer; and 3) a phenotype application layer. In a prototype implementation, we developed the repository and services through integrating the data elements from both Quality Data Model (QDM) and HL7 Fast Healthcare Inteoroperability Resources (FHIR) models. We discuss the modeling challenges and the potential of our system to support EHR phenotype authoring and execution applications.

摘要

本研究描述了我们在开发一个基于标准的语义元数据存储库以支持电子健康记录(EHR)驱动的表型创作与执行方面所做的努力。我们的系统包括三层:1)语义数据元素存储库层;2)语义服务层;3)表型应用层。在一个原型实现中,我们通过整合来自质量数据模型(QDM)和HL7快速医疗互操作性资源(FHIR)模型的数据元素来开发存储库和服务。我们讨论了建模挑战以及我们的系统支持EHR表型创作和执行应用的潜力。

相似文献

2
Developing a data element repository to support EHR-driven phenotype algorithm authoring and execution.
J Biomed Inform. 2016 Aug;62:232-42. doi: 10.1016/j.jbi.2016.07.008. Epub 2016 Jul 5.
7
Ontology content patterns as bridge for the semantic representation of clinical information.
Appl Clin Inform. 2014 Jul 23;5(3):660-9. doi: 10.4338/ACI-2014-04-RA-0031. eCollection 2014.
10
Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching.
Int J Med Inform. 2019 Dec;132:104002. doi: 10.1016/j.ijmedinf.2019.104002. Epub 2019 Oct 5.

引用本文的文献

1
HL7 FHIR-based tools and initiatives to support clinical research: a scoping review.
J Am Med Inform Assoc. 2022 Aug 16;29(9):1642-1653. doi: 10.1093/jamia/ocac105.
2
An information model for computable cancer phenotypes.
BMC Med Inform Decis Mak. 2016 Sep 15;16(1):121. doi: 10.1186/s12911-016-0358-4.
3
A Decompositional Approach to Executing Quality Data Model Algorithms on the i2b2 Platform.
AMIA Jt Summits Transl Sci Proc. 2016 Jul 20;2016:167-75. eCollection 2016.
5
Clinical phenotyping in selected national networks: demonstrating the need for high-throughput, portable, and computational methods.
Artif Intell Med. 2016 Jul;71:57-61. doi: 10.1016/j.artmed.2016.05.005. Epub 2016 Jun 25.
6
Developing a data element repository to support EHR-driven phenotype algorithm authoring and execution.
J Biomed Inform. 2016 Aug;62:232-42. doi: 10.1016/j.jbi.2016.07.008. Epub 2016 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验